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CHAPTER 1

Introduction to Radar Detection
Antonio De Maio1, Maria S. Greco2,
and Danilo Orlando3

1.1 Historical Background and Terminology
Radar is the acronym of the words RAdio Detection And Ranging. As the term suggests, the
device has been conceived to detect the presence of a target and to measure its range [1]. The
basic operating principle of a radar system was largely known since the days of physicists
James Clerk Maxwell and Heinrich Hertz. It relies on the fact that electromagnetic waves
interact with matter and a portion of the transmitted energy is intercepted by a prospective
object and re-radiated in many directions. As a consequence, the energy backscattered towards
the irradiating source can be properly used to infer the presence and the distance of the object
[2, and references therein].

In his seminal work on electromagnetism, Maxwell glimpsed the above mechanism, and
at the end of the nineteenth century, Hertz conducted a set of experiments showing that radio
waves were completely reflected by metallic objects. During 1920s, Guglielmo Marconi, the
well-known pioneer of wireless radio, clearly understood the possibility to reveal the presence
of far objects by means of radio waves; this appeared clear from his papers, where he described
the system used in his experiments along with the experimental results. In addition, he pointed
out the utility of this system in the context of navigation safety in adverse weather conditions
(e.g., foggy weather), and in 1922, he strongly urged its use in a speech delivered at the
Institute of Radio Engineers (now the Institute of Electrical and Electronic Engineers). Another
important pioneer of radar systems is the German inventor Christian Hülsmeyer. In 1903, he
built up the first ship collision avoidance system exploiting radio echoes, which was formed
by a transmitting apparatus and a separated coherent receiver. Each of them was equipped with
the respective dipole antenna. The system was capable of detecting ships up to 3 km but it did
not provide any range information.

Radar became an operational reality in the late 1920s and early 1930s especially due to
military pressures, since the wind of a Second World War (WW2) was in the air. In this period,

1Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli “Federico
II”, Napoli, Italy
2Dipartimento di Ingegneria dell’Informazione, Università di Pisa, Pisa, Italy
3Facoltà di Ingegneria, Università degli Studi “Niccolò Cusano”, Roma, Italy

1



2 CHAPTER 1 • Introduction to Radar Detection

the nations, which played an important role in the course of WW2, independently and in great
secrecy, developed systems of this type.

In the United Kingdom, the first studies on the use of radio signals were carried out by
Sir Robert Alexander Watson-Watt, engaged by the Meteorological Office, where his relevant
activity concerned the exploitation of radio signals emitted during a thunderstorm to locate it.
Afterwards, he became a superintendent of the Radio Research Station and was involved in
scientific research of military interest. As war clouds gathered over Great Britain, the British
scientific community focused its efforts on the detection problem of radio signals reflected by
possible threatening objects as aircrafts. To this end, the lightning detection concept of Watson-
Watt was exploited to conceive pulsed-based detection systems, which were capable of provid-
ing distance measurements. Further developments took place as the WW2 was approaching.

In the United States, the development of radar systems had separately involved both the
Navy and the Army with a little coordination of their efforts. The first systems aimed at detecting
the presence of a far object were based on the interferences observed on the transmitted
signals. The Naval Research Laboratory (NRL) devised a simple wave-interference apparatus
for detecting ships and aircrafts, but it cannot determine the respective location or velocity. As
it happened in the United Kingdom, this information was available with the invention of pulsed
radars. Another important technological advance introduced by NRL was the duplexer which
allowed the transmitter and the receiver to use the same antenna. As to the Army, the Signal
Corps Laboratories significantly contributed to the design of radar systems also exploiting the
results obtained by NRL.

As already stated at the beginning of this section, in Germany, Hülsmeyer was the inventor
of the first radio-based device for remotely indicating the presence of ships (1903). However,
this apparatus cannot be defined a radar, since it does not provide any range information. Over
the following three decades, the radio-based detection systems proliferated in Germany, but
none of them were true radars. Again, with the approaching of WW2, the scientific efforts on the
design of radio-based detection systems became more and more intensive. As a consequence,
German industries such as GEMA, Telefunken, and Lorenz started a collaboration with the
German military aimed at the realization of true radar systems with excellent performances in
terms of detection and localization of aircrafts and ships.

The first radio-based detection system developed in Italy is the so-called radioecometro
due to the work of Marconi around 1933. In May 1935, Marconi demonstrated his system
to the Fascist dictator Benito Mussolini and members of the military General Staff; however,
the output power was insufficient for military use. While Marconi’s demonstration raised
considerable interest, little more was done with his apparatus. Subsequently, the radio-based
technology developments were assigned by Mussolini to the Regio Instituto Electrotecnico e
delle Comunicazioni (RIEC) which was established in 1916 on the campus of the Italian Naval
Academy in Livorno. Lieutenant Ugo Tiberio, a physics and radio-technology instructor at
the Academy, was assigned to head the project on a part-time basis. Tiberio prepared a report
on developing an experimental apparatus that he called telemetro radiofonico del rivelatore
(RDT). Before the end of 1936, Tiberio and Nello Carrara, a civilian physics instructor at RIEC
who was added to be responsible for developing the RDT transmitter, had demonstrated the
EC-1, the first Italian RDT system. The EC-1 did not provide a range measurement; as previ-
ously seen in other countries, to add this capability, the development of a pulsed system was
initiated in 1937. Finally, the evolution EC-3/ter (GUFO) released in 1941 can be considered
as the first operational Italian Radar System.

On the German side, FREYA radars produced by GEMA were used to form German air
defense early warning radar network [3, and references therein]. These radars used antenna
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arrays operating at a frequency around 120–130 MHz and were in service from the begin-
ning of the WW2. A number of different types of this radar were developed over the course
of the war. German ground-based fighter control used radars called WÜRZBURG and later
WÜRZBURG-RIESE, operating in the frequency band around 560 MHz. The overall German
air defense system was a network of radar stations, each known as a Stellung (site) and
denoted by codenames. There were three orders of sites. Specifically, the third-order sites
reported information using coded radio transmissions to the first-order sites; the second-order
sites formed an air picture and transmitted that to the first-order sites. Finally, the first-order
sites fused information received from the other sites (including their own information) and
transmitted the combined information to a Himmelbett Operations Room, where the overall
picture was assembled and passed back to the sites.

Espionage information on German air defense system pushed Allied scientists to devise
jamming and deception techniques. One of the first jammers, a noise barrage jammer
(MANDREL), was developed by British scientists and employed against FREYA and its deriva-
tives. In response, Germans widened the band over which FREYA could operate and, hence,
the frequency coverage of MANDREL had to be increased accordingly. Subsequently, German
scientists learned about British air defense whose codename was Chain Home. This system
was the ring of coastal early warning radar stations built by the British before and during the
WW2. The Chain Home stations were designed to operate at 20–50 MHz (although typical
operations were at 20–30 MHz). The availability of multiple operating frequencies gave some
protection from jamming. The detection range was typically 190 km. The observations of the
Chain Home coupled with the realization of the need to devise early warning radar that did
not suffer from the various Allied countermeasures led to the concept of completely passive
radar receiver. To this end, Telefunken developed the first bistatic radar of the world, whose
name was Klein Heidelberg. The advantages of bistatic architectures were manifold. More
precisely, it allowed for covert operations against emitter locators, jammers, and antiradiation
missiles exploiting ambient transmissions; very long detection ranges; lower cost, size, weight,
and power than an equivalent monostatic radar. In the next years, the idea behind the bistatic
architecture was further investigated [4] giving rise to the modern multistatic architectures,
which involve multiple entities transmitting signals and receiving echoes. Again, receivers can
be kept covert if they are spatially separated from the transmitters.

From the inspection of the radar system evolution over the years, it is apparent that, after
the WW2, radar capabilities and applications rapidly continued to advance up to nowadays
and are expected to continue. The major areas of radar application refer to

• Military field (air defense systems, offensive missiles, and other weapons);
• Environmental remote sensing (weather observation, planetary observation, and mapping

of sea ice to route shipping in an efficient manner);
• Air traffic control;
• Highway safety (radar speed meter and control systems to avoid vehicle collisions);
• Ship safety and other.

Despite these numerous and different application areas, the radars perform three general
functions, which are search, track, and image [5]. The most important operation of a search
radar is the processing aimed at target detection, while the primary purpose of a tracking radar is
to make measurements of the target state in range, azimuth angle, elevation angle, and Doppler
frequency offset within preassigned precision and accuracy. However, the above statements do
not preclude that a search radar will provide target measurements, which can be used by other
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sensors, and that a tracking radar will perform the detection process. In many existing tracking
systems, the tracking function is performed by a set of analog circuits which control the antenna
and the range servo in order to continually point the antenna beam at the target position verifying
that the range measurement and the direction of arrival coincide with the target position.
However, in modern systems, the tracking function is accomplished by processing a sequence
of target measurements provided by the sensor. Tracking algorithms are usually implemented
in software and develop an accurate state vector (position, velocity, and acceleration) for
the target. This state estimate becomes an integral part of a fire control system, directing
a weapon or cueing another sensor to the target state. Once a target is detected in track, the
imaging function comes in handy for target classification, discrimination, and/or identification
purposes. As a matter of fact, it provides high-resolution data in range, azimuth, elevation, and
sometimes Doppler. Generally speaking, imaging radar attempts to form an image of the object
by mapping the electromagnetic scattering coefficients onto a two-dimensional plane. Objects
with a higher coefficient are assigned a higher optical reflective index creating an optical image.
An example of imaging radar is represented by the Synthetic Aperture Radar (SAR) [6]. SAR
systems combine radar hardware, waveforms, signal processing, and relative motion to create
photograph-like renderings of stationary targets and scenes of interest. The principal product
of any basic SAR implementation is a fine-resolution two-dimensional intensity image of the
illuminated scene. SAR is widely employed by the remote sensing community for mapping and
land-use surveying and by the military for detection, location, identification, and assessment
of fixed targets.

The focus of this book is on modern processing techniques for radar detection. In this
context, the effectiveness of a radar system is measured by its ability to distinguish the target
from the clutter and/or other kind of interference. In order to improve the detection capabilities
in practical scenarios, radar systems often process several pulses while the antenna beam is
pointed at a target. In this case, the time taken to transmit (and receive) the N pulses used for
detection (see also Chapter 2) is called dwell time. If these pulses are coherently integrated
(i.e., both the amplitude and the phase of the received signals are used in the processing so that
the signal contributions can be made to add in phase with one another), the time duration of
the processing is often called coherent processing interval.

On the other hand, the term clutter denotes unwanted echoes (due to the environment)
that interfere or obscure the target. There exist several types of clutter which differ in their
spectral properties. For instance, clutter can be caused by the earth (land and/or sea), other
targets that are not of strategical interest, chaff, rain, clouds, birds, insects, and more. An
important kind of clutter is the ground clutter [7], which is caused by echoes backscattered
from the ground. It can be quite detrimental in littoral environment [8]. A non-clutter source
of interference to all radars is intentional (jamming) or unintentional interferers by a source
of electromagnetic radiation located at some distance from the radar but transmitting signals
in the radar’s transmit/receive frequency band. This deleterious energy could be produced by
hostile sources (as seen in WW2) or from radiating equipments made for other purposes (for
instance, telecommunication systems) that happen to have a similar interference effect on the
radar. The problems of clutter and jamming (or other source of interference) suppression have
dominated the minds of radar engineers since the beginnings of radar.

Space–Time Adaptive Processing (STAP) and related techniques play a fundamental role
for clutter and jamming suppression in radar. The first space-time processor, proposed by Reed,
Mallett, and Brennan in References 9 and 10 (RMB test), is a matched filter followed by an
envelope detector. It requires knowledge of the covariance matrix of the disturbance; in practice,
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the covariance matrix is unknown and must be estimated from the observables. It is customary to
assume that a set of secondary data, representative of the noise in the cell under test, is available;
this scenario will be referred to in the following as homogeneous environment. The RMB test
can be properly normalized by the output power in order to guarantee the Constant False
Alarm Rate (CFAR) property. The corresponding detector is called Adaptive Matched Filter
[11]. In Reference 12, the Generalized Likelihood Ratio Test (GLRT) is used to conceive an
adaptive decision scheme capable of detecting coherent pulse trains in the presence of Gaussian
disturbance with unknown spectral properties. The above work by Kelly represents a milestone
in radar adaptive detection, since most of the more recent papers follow its lead. As a matter of
fact, problems encountered in practice gave rise to manifold derivatives of the model proposed
in Reference 12. For instance, the uncertainties on the actual direction of arrival of target
returns led to the application of the subspace idea to the signal model (see Chapters 3 and 4)
and, subsequently, to the design of the so-called tunable receivers (see Chapter 4). Other recent
approaches make use of a priori knowledge to properly select data for estimation purposes and,
consequently, to improve detection performances of STAP systems (see Chapter 5). Further
studies facing with the lack of secondary data can be found in open literature (see Chapter 6).
The model of the disturbance occurring in radar applications is another issue addressed by radar
community. Indeed, due to the increased resolution capabilities of modern radars, the Gaussian
model becomes inadequate. To cope with this drawback, the compound-Gaussian model and,
more generally, the Complex Elliptical Symmetrical (CES) distributions are investigated (see
Chapters 7 and 8). Finally, it is important to observe that an increased radar resolution yields
to the so-called range-spread targets, which require additional assumptions at the design stage
of a radar detector (see Chapter 9).

In the sequel, a brief review of detection theory and statistical tools used to design decision
architectures is given.

1.2 Symbols
The following symbols are used throughout the book.

R Set of real numbers
C Set of complex numbers
N Set of Natural numbers
Rm×n Set of real matrices (vectors) of dimension m × n (m × 1)
H Denotes a Hilbert space
j the imaginary unit
(·)T Matrix transpose
(·)† Hermitian operation for a matrix
(·)∗ Complex conjugation
x Boldface and lower case letter denotes a vector
X Boldface and upper case letter denotes a matrix
x Letter in normal font denotes a scalar
xi or x(i) The ith component of vector x
X(n) or x(n) or xi(n) or x(n) Time dependence on the time index n, depending on

if it is a matrix, vector, vector component, or scalar
∇f (x) or ∇xf (x) or ∂f (x)

∂x The gradient of a function
X(i, j) or Xij The (i, j)th element of matrix X
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Xij(n) Time dependence on the time index n of the (i, j)th element
of a matrix X

E[·] Denotes statistical expectation
x̂ Denotes the estimate of a variable x
x ⊥ y Denotes orthogonal vectors
|x| and |z| Absolute values of a real number x and modulus of a complex number z
‖x‖ or ‖x‖2 Denotes Euclidean norm
‖A‖F Denotes Frobenius norm
‖x‖p Denotes lp norm
Re(z) Denotes the real part of a complex number
Im(z) Denotes the imaginary part of a complex number
In or I Denotes the identity matrix of dimension n × n or of proper dimensions
0n,m or 0 Denotes the null matrix of dimension n × m or of proper dimensions
vec(A) Column vector formed by stacking the columns of A
diag(A) Column vector with the diagonal entries of A
rank(A) Rank of matrix A
A ⊗ B The Kronecker product of two matrices
det(·) The determinant of a matrix
Tr(·) The trace of a matrix
λi, i = 1, . . . , m The eigenvalues of an m × m matrix
R(A) Range space of A
N(A) Null space of A
P(·) Probability of a discrete event
p(·) or f (·) Probability density function of a random variable
σ2 or σ2

x The variance of the random variable x
log(a) The logarithm of a relative to base 10
ln(a) The natural logarithm of a
exp(a) The exponential function
A � B Means that A − B is positive definite
A � B Means that A − B is positive semidefinite
Notation of a matrix A

A =

⎡⎢⎢⎢⎢⎣
A(1, 1) A(1, 2) · · · A(1, m)

A(2, 1) A(2, 2) · · · A(2, m)
...

...
...

...

A(m, 1) A(m, 2) · · · A(m, m)

⎤⎥⎥⎥⎥⎦
Notation of a vector x

x = [x1, x2, . . . , xm]T =

⎡⎢⎢⎢⎢⎣
x1

x2

...

xm

⎤⎥⎥⎥⎥⎦
1.3 Detection Theory
Radar systems are faced with the problem of discriminating the useful target echoes from the
interference background, which hides the target making its detection difficult. Thus, the task
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of a radar processor is to decide whether or not the collected returns contain useful signal
components. This problem can be formulated in terms of a binary hypothesis test [13]{

H0 : data contain interference only,

H1 : data contain useful target and interference,
(1.1)

where1 H0 is referred to as the null hypothesis and H1 as the alternative hypothesis.

1.3.1 Signal and Interference Models
Let us focus on the target response and notice that several models are possible according to the
operating scenarios, the specific application, the range resolution, the transmitted waveforms,
and, generally speaking, uncertainty factors. The ratio between the physical size of a target
and the range resolution specifies the number of range bins wherein the target is present. More
precisely, when the above ratio is less than one, the target response is produced by a point-like
scatterer belonging to a given range bin; on the other hand, when the ratio is greater than
one, a suitable target model can be developed observing that useful returns can originate from
several adjacent range bins, namely the target occupies more than one range cell (range-spread
targets) [14]. From a theoretical point of view, if Z denotes the matrix of the collected returns,
the following two cases can be considered{

Z ∈ CN×1 for a point-like target,

Z ∈ CN×Kp , Kp ∈ N \ {1}, for a range-spread target,
(1.2)

where \ denotes the set difference, Kp is the number of range cells containing target returns,
and N is the dimension of the data vectors. In addition, it is important to highlight that the
latter parameter depends on the number of sensors composing the system, Na say, and the
number of transmitted pulses, Np say, to sense the surveillance area. The adjustment of these
two quantities entails the form of the target steering/direction vector, p say, whose size is
N = Na × Np [7,8]. According to the values of (Na, Np), the steering vector is said space–time
if Na > 1 and Np > 1, temporal if Na = 1 and Np > 1, and spatial if Na > 1 and Np = 1.

In realistic scenarios, the steering of the signal backscattered from a target illuminated by
the system may be different from the nominal steering vector due to several environmental
and/or instrumental factors. As a consequence, receivers designed under the assumption that
the steering vector is perfectly known may exhibit significant performance degradation. An
approach to overcome this drawback is the Subspace Detection Paradigm [13, 15], which
consists in modeling the target as a linear combination of known basis vectors. In other words,
it is possible to capture the target energy in the presence of steering mismatches assuming
that the latter belongs to a known observation subspace. It follows that at the design stage, the
target direction vector can be modeled as

p = Hθ, (1.3)

1In radar terminology, H0 and H1 are usually called noise-only hypothesis and signal-plus-noise hypothesis,
respectively.
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where H ∈ CN×r is a known full-column-rank matrix representing the subspace of the tar-
get, and θ ∈ Cr×1 is an unknown vector containing the coefficients of the linear combination
which yields the steering vector. Other models are also possible to take into account steering
mismatches [16].

Target reflectivity is another important aspect that should be considered at the design stage.
To this end, a factor α ∈ C is introduced to model the signal returns at a specific range, and it
can be analytically described in several ways. More specifically, denoting the amplitude and
the phase of α by A and ϕ, respectively, the following instances could be envisaged

(1) A and ϕ are known parameters;

(2) A and ϕ are unknown deterministic parameters;

(3) A is an unknown deterministic parameter, and ϕ is a random variable uniformly distributed
in (0, 2π);

(4) A is a random variable ruled by a known probability density function (pdf) (or a pdf with
unknown parameters belonging to a known family of pdfs), and ϕ is a random variable
uniformly distributed in (0, 2π) and independent2 of A.

Modeling A and ϕ as known parameters is not reasonable in practice, but it is of interest from
a theoretical point of view in order to [13, 14, 19]

• determine the Most Powerful (MP) test, which represents an upper bound for the achievable
performance of any other test.

• ascertain whether or not the Uniformly Most Powerful (UMP) test with respect to A and/or
ϕ exists;

On the other hand, the remaining models are viable means to address several realistic scenarios.
However, it is important to highlight that modeling ϕ as a random variable can make the
evaluation of the likelihood function under H1 an intractable problem.

Before concluding this section, recall that the signals collected by the radar antennas in gen-
eral contain interference components, which are due to the receiver electronics (thermal noise),
ambient reverberation (clutter), and masking and/or deception jamming signals. Observe that
deception jamming signals are assumed to be present only in one or a few range cells of the
radar while masking barrage jamming signals are common to all of the radar range cells.
Another important remark is that the extent in range of clutter is a function of the grazing angle
and radar Pulse Repetition Frequency (PRF). For instance, in the case of low-PRF systems,
the radar unambiguous range is greater than the radar horizon and, as a consequence, beyond
the horizon, the range gates are corrupted only by jamming signals and noise.

As to the clutter response, the amplitude of the complex envelope is commonly assumed
to be Rayleigh distributed, whereas the corresponding quadrature components are jointly
Gaussian. The above assumption is usually justified when clutter arises from the superpo-
sition of returns from a large number of equivalent elementary scatterers, independent of one
another, whence the resulting process is Gaussian as a consequence of the central limit theo-
rem. However, experimental data indicate that large deviations from the Rayleigh statistics are

2When the radar cross section of the target obeys the (real) central chi-square distribution, several combinations
(Swerling models) are possible according to the degrees of freedom of the pdf and the correlation of target returns
(pulse-to-pulse or scan-to-scan fluctuations) [17, 18].
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possible; for instance, deviations are observed for low grazing angles and/or high-resolution
radars [20]. It also turns out that conventional detectors, namely the ones designed under the
assumption of Gaussian disturbance, suffer false alarms inflation and/or marked detection per-
formance degradation as the actual amplitude probability density function (apdf) of the clutter
significantly deviates from the Rayleigh law. In such cases, the actual apdf of the clutter is
better described in terms of families of apdfs ruled by shape parameters in addition to the scale
one as, for instance, the Weibull and the K biparametric families. Moreover, the baseband
equivalent of the disturbance can be generally described as a compound-Gaussian process,
namely the product of a rapidly varying (complex) Gaussian process times an independent,
slowly varying, non-negative modulating process (accounting for the reflectivity of the illu-
minated patch) [21, 22, and references therein]. On a properly short observation time, such a
process degenerates into a spherically invariant random process [20].

Finally, as to the coherent interferer, it can be modeled as a target by means of a steering
vector and a complex amplitude, which is reasonably unknown at the receiver and, hence,
must be estimated from data (for instance, the subspace idea can be applied to find the jammer
direction of arrival).

1.3.2 Basic Concepts
In the sequel, a brief review of the basic concepts concerning decision theory is provided. For
the sake of simplicity, let θ ∈ CN×1 the parameter vector for the observed data distribution and
consider the following problem {

H0 : θ = θ0,

H1 : θ = θ1.
(1.4)

It is clear that the above hypotheses completely specify the distribution of data, and for this
reason, they are said to be simple. Generally speaking, each simple hypothesis maps into a
point of the parameter space, that is given by

� = {�0, �1}, (1.5)

where �i = {θi}, i = 0, 1. On the other hand, if �i contains more than one point of the
parameter space, Hi is called composite and maps into a subset of the parameter space. A
typical example is {

H0 : θ ≤ θr ,

H1 : θ > θr ,
(1.6)

where θr is a specific value of the parameter vector. The case of composite hypotheses is useful
to face with scenarios of practical interest, where the unknown relevant parameters have to be
properly estimated.

In radar detection, due to the presence of the so-called nuisance parameters that are not
relevant to the decision problem, both the null and the alternative hypotheses are very often
composite. Moreover, the goal of a radar system is to use the received data as efficiently
as possible in deciding which hypothesis is in force, according to an optimality criterion.
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To this end, it is worth distinguishing two types of errors that can occur in the decision
process, i.e.,

(1) Type I error. It consists in mistaking the interference for signal when only the interference
is present, i.e., when we decide H1 but H0 is true. In radar, this type of error is named
false alarm.

(2) Type II error. It occurs when a signal is present, but it is erroneously considered inter-
ference, i.e., when we decide H0 but H1 is true. It is also called missed detection.

A guideline to the design of decision architectures could be to simultaneously reduce both
error probabilities, but, in many physical situations, these objectives are in conflict [14]. Thus,
a reasonable criterion consists in keeping one error probability constant while minimizing the
other one (in the sequel, a formal definition of this criterion is given).

Before proceeding, let us introduce the performance parameters that come in handy for
the design of the best test (if any) or at least optimized detection strategies. More precisely, a
decision rule �(r) is a function of the observed data, r say, such that

�(r) =
{

0 ≡ H0, if r ∈ R0,
1 ≡ H1, if r ∈ R1,

(1.7)

where {R0,R1} is a partition of the space of the observables.
When H0 is simple, namely �0 = {θ0}, then the probability of false alarm (Pfa) or size,

	 say, is defined as

	 � Pθ0 [�(r) = 1] = Eθ0 [�(r)] = Pfa, (1.8)

where Pθ[·] and Eθ[·] denote the probability measure and the statistical expectation, respec-
tively, when the parameter is θ. On the other hand, if H0 is composite, then the size of �(r) is
defined using the supremum, i.e.,

	 � sup
θ∈�0

Pθ[�(r) = 1] = sup
θ∈�0

Eθ[�(r)]. (1.9)

It is important to observe that in radar, the decision rules compare a statistic (function of data)
with a threshold set to ensure a given level of Pfa. To this end, the threshold is usually tuned
assuming that H0 is simple, even though it actually is not. As a consequence, the threshold
depends on the value of the parameter θ0 used to evaluate it. The above dependence could be
removed exploiting (1.9), which yields a detection threshold (if any) allowing to control the
worst-case probability of accepting H1 given H0.

The power of a test (also referred to as probability of detection (Pd)) is

β(θ) ≡ Pd(θ) � Pθ[�(r) = 1] = Eθ[�(r)], θ ∈ �1. (1.10)

Finally, we say that a test � of size 	 is UMP if

Pθ[�(r) = 1] ≥ Pθ[�′(r) = 1], ∀ θ ∈ �1, (1.11)

with �′ any other test of size 	′ ≤ 	. Note that if the hypotheses are simple, the UMP test is
the MP test.
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1.3.3 Detector Design Criteria
As stated above, it is desirable to devise powerful decision schemes of small preassigned size.
In the case of simple hypotheses, we say that a test � is the best test of size 	 if it is the most
powerful among all tests of size less than or equal to 	. The Neyman–Pearson criterion tells
us how to find this test.

Theorem 1.1. (Neyman–Pearson lemma): Let � = {θ0, θ1} and denote by f (r; θi) the pdf
or probability mass function of r for θi, i = 0, 1. A test of the form

�(r) =
⎧⎨⎩

1, f (r; θ1) > η f (r; θ0),
γ , f (r; θ1) = η f (r; θ0),
0, f (r; θ1) < η f (r; θ0),

(1.12)

for some η ≥ 0 and γ ∈ [0, 1] is the MP test of size 	 ∈ (0, 1) for testing H0 : θ = θ0 vs H1 : θ = θ1.

Note that �(r) = i, i = 0, 1, means that we choose Hi; on the other hand, �(r) = γ means
that we choose H1 with probability γ and H0 with probability 1 − γ . As to the choice of η and
γ , observe that the size of the test can be evaluated as

	 = Eθ0 [φ(r)] = Pθ0 [ f (r; θ1) > η f (r; θ0)] + γPθ0 [ f (r; θ1) = η f (r; θ0)] (1.13)

= 1 − Pθ0 [ f (r; θ1) ≤ η f (r; θ0)] + γPθ0 [ f (r; θ1) = η f (r; θ0)]. (1.14)

Now, if there exists a η0 such that

Pθ0 [ f (r; θ1) ≤ η0 f (r; θ0)] = 1 − 	, (1.15)

we set η = η0 and γ = 0. On the other hand, if there exists a η0 such that

Pθ0 [ f (r; θ1) < η0 f (r; θ0)] < 1 − 	 < Pθ0 [ f (r; θ1) ≤ η0 f (r; θ0)], (1.16)

η = η0 and γ is given by

γPθ0 [ f (r; θ1) = η0 f (r; θ0)] = Pθ0
[ f (r; θ1) ≤ η0 f (r; θ0)] − (1 − 	). (1.17)

It is important to observe that the best test according to the Neyman–Pearson criterion is the
likelihood ratio test of the form

f (r; θ1)

f (r; θ0)

H1
>
<
H0

η, (1.18)

where η is the threshold to be set in order to guarantee the preassigned Pfa.
In realistic decision problems, the distribution of the received data is not completely known

and, hence, we have to deal with composite hypothesis testing problems for which the UMP
test may not exist. In addition, the presence of parameters that do not enter into the hypothesis
testing makes the design of practically useful tests even more difficult. In this case, θ0 and
θ1 share common components represented by the nuisance parameters. As a consequence, the
design of good detectors when the pdfs have unknown parameters becomes of great practical
importance.
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In the sequel, we review the most common approaches to composite hypothesis testing
problem. For simplicity, we assume that nuisance parameters are not present and refer the
reader to Reference 23 for further details on the same design criteria in the presence of nui-
sance parameters. More precisely, we focus on suboptimal tests such as the GLRT, the Rao
test, and the Wald test, which are asymptotically equivalent [23]. Among them, the GLRT has
been the most commonly employed in statistical signal processing, even if it shares no known
optimality properties for a finite number of observations.

Assuming simple H0 and composite H1 (the generalizations accounting for nuisance para-
meters can be found in Reference 23), the GLRT replaces the unknown parameters with the
respective Maximum Likelihood (ML) estimates and has the following expression

�(r) =
max
θ∈�1

f (r; θ)

f (r; θ0)
= f (r; θ̂1)

f (r; θ0)

H1
>
<
H0

η, (1.19)

where

θ̂1 = arg max
θ∈�1

f (r; θ) (1.20)

is the ML estimate of θ under the H1 hypothesis. Although there is no optimality associated
with the GLRT, in most cases of practical interest it gives satisfactory results. The Wald and
Rao tests are alternative to the GLRT and may be easier to compute in practice; the expression
of the Wald test is

(̂θ1 − θ0)T F(̂θ1)(̂θ1 − θ0)
H1
>
<
H0

η, (1.21)

while the Rao test is given by

∂ ln f (r; θ)

∂θ

∣∣∣∣T

θ = θ0

F−1(θ0)
∂ ln f (r; θ)

∂θ

∣∣∣∣
θ = θ0

H1
>
<
H0

η, (1.22)

where F(θ) denotes the Fisher information matrix [24].
It is important to underline that under the assumption of Gaussian interference when α and

the interference covariance matrix, M say, are unknown, the GLRT does not exist (with just a
data vector under test, the likelihood function becomes unbounded). In order to circumvent this
drawback, it is customary to assume that a set of K ≥ N secondary data, namely returns free
of signal components, but sharing the spectral properties of the interference in the data under
test (or primary data), is available. Secondary data could be obtained processing range gates
in spatial proximity with that under test. This scenario is usually referred to as homogeneous
environment. In addition to the classical homogeneous scenario, it is also reasonable to consider
the partially homogeneous environment [25], where the power value of primary and secondary
data vectors is not the same; more precisely, the two covariance matrices coincide only up to
a scaling factor. As a consequence, the detection problem at hand can be re-formulated as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

H0 :

{
r = n,
rk = nk , k = 1, . . . , K ,

H1 :

{
r = αp + n,
rk = nk , k = 1, . . . , K ,

(1.23)
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where n, nk , k = 1, . . . , K are the interference components that are supposed statistically inde-
pendent with zero mean and sharing the same covariance matrix in homogeneous environment,
whereas in partially homogeneous environment

E[nn†] = σ2M and E[nkn†
k] = M, k = 1, . . . , K , (1.24)

with σ2 > 0. Note that the homogeneous environment is a special case of the partially homo-
geneous one; indeed, if σ2 = 1 primary and secondary data share the same statistical charac-
terization of the noise. Finally, it is worth mentioning the heterogeneous environment, where

E[nn†] �= E[n1n†
1] �= · · · �= E[nK n†

K ]. (1.25)

The reader is referred to Chapters 7–9 for further details on the above model, while in
Reference 26 the reader can find a list of papers concerning adaptive radar detection of targets
against ground and sea clutters, clustered according to several related issues.

1.3.4 CFAR Property and Invariance in Detection Theory
A very challenging problem arising in radar signal processing is to achieve a reliable target
detection in the presence of severe clutter backgrounds. When the clutter statistics are unknown
or highly variable, the false alarm rate of the conventional square law detector, matched filter,
and in general nonadaptive radar receivers cannot be controlled and target decisions become
often unreliable. This is due to the lack of robustness of the quoted receivers with respect to
possible mismatches between the design and operating conditions as well as variations in the
clutter statistics. In order to overcome these drawbacks, adaptive systems have to be adopted,
namely wherein the unknown interference parameters are suitably estimated and the detection
threshold is adjusted accordingly. In this case, we say that the receiver ensures the CFAR
property.

Formally speaking, the aim of CFAR detection theory is to design decision rules whose
pdfs, under the null hypothesis H0, are functionally independent of the unknown nuisance
parameters (for example, the disturbance power and covariance matrix). As a consequence,
the more remarkable property of a CFAR test is the possibility to set the detection threshold
to guarantee a preassigned Pfa independent of the actual disturbance parameters. Much work
has been directed so far towards the design and the assessment of systems capable of ensuring
CFARness subject to the commonly encountered instances of clutter models. Basically, most
of the proposed detectors develop estimates of the clutter parameters processing the secondary
data that are representative of the interference of the cell under test.

The most common CFAR algorithms deal with scalar data at the output of a linear, square-
law, or logarithmic detector. Further details on these techniques can be found in Chapter 16 of
[5], where several CFAR architectures are examined starting from the Cell-Averaging CFAR
up to the Order Statistic CFAR algorithms. Unlike the standard approaches to CFARness, in
this book, processed data are vectors and matrices, which stem from the structure of the sensing
system. As a consequence, the generalization of CFAR processors to multiple dimensions is
herein presented and analyzed.

Unfortunately, the CFAR property is not granted by a generic detection scheme. Otherwise
stated, before claiming the CFARness for a given receiver, it must be proved that its decision
statistic does not depend on the interference parameters under the null hypothesis H0 (see, for
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instance, References 11, 12, and 27). On the other hand, CFARness can be obtained properly
modifying the decision statistic with normalization factors (or other heuristic tricks), which
remove the dependence on the unknown interference parameters, or forcing suitable symmetry
properties at the design stage, which, in turn, imply the CFAR property. This last point can
be accomplished by means of the Theory of Invariance in hypothesis testing [19, 28], which
allows to restrict the attention to invariant tests, namely decision rules that do not distinguish
between scenarios differing in their nuisance parameters, and to define optimality criteria
within this family. As a matter of fact, the invariance criterion equalizes performance among
diverse scenarios sharing same significant parameters (e.g., the signal-to-noise ratio). It can
be shown in certain cases that the UMP invariant test (if it exists) yields the minimax test
for the problem in the sense of maximizing the minimum (over parameter values) of Pd for a
given Pfa. Moreover, it is important to observe that under some mild technical assumptions,
the GLRT, the Rao test, and often the Wald test lead to invariant architectures [29].

Several applications of this theory to radar detection can be found in the open literature;
just to give some examples see References 30–37. Applying this criterion has the effect of
drastically reducing the problem size since it can be shown that all invariant test statistics
can be expressed in terms of a statistic (having much fewer dimensions than the data) called
the maximal invariant, which organizes the original data into equivalence classes. Therefore,
characterizing this statistic greatly facilitates and sometimes completes the search for a good
test statistic. Remarkably, the distribution of the maximal invariant is parameterized by another
low-dimensional function on the parameter space (called the induced maximal invariant). In
this way, most of the nuisance parameters are removed from the problem. Finally, it is important
to recall that forcing suitable symmetry properties with respect to the nuisance parameters to
a decision statistic implies as a by-product some important features of practical interest such
as the CFAR behavior.

1.4 Organization, Use, and Outline of the Book
The book is organized so that it can be used in a variety of ways for a variety of purposes.
Sequential reading is not necessary. Extensive cross referencing has been attempted so that
related material can easily be found; we hope this will enhance the book’s value as a reference.
For the same purpose, a detailed table of contents and an extensive index are also provided.
This book has been conceived to provide a comprehensive reference on the last developments
in adaptive radar detection, and it should be useful to post-graduate students, PhD students,
researchers, and, more generally, engineers working on statistical signal processing and its
applications to the radar systems. Finally, we assume that the reader has a quite solid background
in probability theory and random processes, matrix theory, linear algebra, and mathematical
analysis.

The remainder of this book is organized as follows:

• Chapter 2 deals with the theory of radar detection in white Gaussian noise. The prob-
lem is formulated in terms of a binary hypothesis test where the null hypothesis of target
absence is tested versus the composite alternative accounting for target presence. The inter-
ference experienced by the radar is modeled as an additive zero-mean complex circular
Gaussian random process with known power spectral density, whereas target returns are
supposed known up to a multiplicative factor accounting for the target reflectivity and chan-
nel propagation effects. Practically implementable receivers can be devised by means of
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two different approaches. Specifically, the former is a Bayesian framework and models
the target unknown parameters as random quantities, the latter is a robust approach and
supposes the target parameters deterministic and unknown. Finally, the performance of the
considered receivers is assessed in terms of Pfa and Pd either using analytic equations or
resorting to numerical simulations.

• Chapter 3 addresses coherent multichannel detection of a signal contained in a known sub-
space and competing with unknown interference from the perspective of invariant hypothesis
testing for radar and sonar applications. The considered framework provides a systematic
approach for dealing with the large number of nuisance parameters typically inherent in
these problems. Example results are provided to illustrate the application of subspace detec-
tors to the problem of mitigating the detection loss resulting from signal mismatch errors.

• Chapter 4 focuses on the design and the analysis of two-stage detectors. These architectures
are formed cascading two structures with opposite behaviors in terms of directivity. The
overall system declares the presence of a target in the cell under test only when data survive
both detection thresholdings. Their directivity can be adjusted by a proper selection of the
two thresholds, so trading good rejection capabilities of sidelobe interferers for acceptable
detection loss of matched signals. This chapter is aimed at providing a complete review
of various two-stage solutions, which can be conceived by coupling existing detectors.
Moreover, closed-form expressions for the probability of false alarm and the probability
of detection (for matched and mismatched signals) are derived and evaluated resorting to
standard numerical integration techniques. The performance analysis highlights that the
two-stage detectors are flexible architectures which provide a wide range of directivity
while retaining good matched detection performances.

• Chapter 5 aims to discuss recent advances on Bayesian Knowledge Aided-STAP (KA-
STAP) techniques. Such techniques advocate an intelligent utilization of a priori knowledge
from various sources, such as previous measurements, digital geographic maps, and real-
time radar platform parameters. A natural and systematic way for incorporating such a priori
knowledge for detection is to employ a Bayesian inference framework. This is appealing for
KA-STAP because the Bayesian method not only allows for the formal and systematic use of
prior information (on the interference covariance matrix) but also quantifies uncertainties
presented in the prior knowledge through hyperparameters. This chapter unfolds as the
classical STAP signal model evolves into a framework of KA-STAP model including a
knowledge-aided homogeneous model, a knowledge-aided partially homogeneous model,
and a knowledge-aided compound-Gaussian model. Moreover, a hierarchical two-layered
STAP model is discussed which provides a new way to describe the non-homogeneity
between the test data and training data. Finally, parametric Bayesian detectors are presented,
which exploit the structural space–time information for the interference model allowing a
fast implementation and further reduction in the amount of training data, along with the
consequent Bayesian estimation.

• Chapter 6 is focused on sample-starved scenarios characterized by a number of independent
identically distributed training samples that is comparable with the dimension of the data.
Then, it presents an alternative adaptive detection framework which heavily relies on more
efficient covariance matrix estimates in the sample deficient environment, namely when
the number of secondary data is not enough for reliable estimates, using the expected
likelihood principle. In the second part of the chapter, a time-varying autoregressive model
is exploited to account for a wider range of interference scenarios and array structures.
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Finally, the proposed detectors are then combined within a two-stage approach to allow the
use of highly effective quasi-CFAR designs, and under these sample-starved conditions,
the resultant detectors exhibit superior behavior to the classical detectors designed using
asymptotically efficient ML techniques.

• Chapter 7 focuses on the compound-Gaussian model for spiky radar clutter. Due to increased
resolution capabilities, the exponential model for the clutter returns does not reveal adequate.
In particular, for sea clutter, large deviations from this model can be observed at low grazing
angles. Several models have been proposed to obtain more accurate descriptions of the
clutter, and these investigations led to the concept that the distribution of radar clutter
returns should be modeled by a mixture of exponential intensity distributions. Such models
are called compound-Gaussian models.

The chapter reviews the general compound-Gaussian model and shows that various gen-
eralizations of the multivariate Gaussian distribution are specific instances of the compound-
Gaussian model. Then, for each of these instances, the general optimal detector is devised.
In addition, several examples of sub-optimal detectors are also provided. The final part of
this chapter deals with the limitations of the compound-Gaussian model and proposes a
research area that may lead to the development of more general random process models to
describe the radar clutter returns.

• Chapter 8 deals with the disturbance covariance matrix estimation theory when the dis-
turbance is CES distributed. The CES family is a broad one whose compound-Gaussian
distributions introduced in Chapter 7 are particular cases. The robust M-estimators are pre-
sented and their statistical properties are summarized, then some radar detectors using these
matrix estimators are applied to real ground- and sea-clutter data.

• Chapter 9 designs some detectors for range-spread targets and analyzes their performance on
recorded live data. To this end, real target and sea-clutter data collected by a fully coherent
Ka-band radar system, featuring sub-meter range resolution, are used. The study is of
particular interest for homeland security radar applications where a careful coastal control is
necessary to prevent the arrival of non-authorized small boats. The performance of both rank-
one and subspace range-spread target detection strategies is analyzed, both in terms of CFAR
behavior and in terms of detection capabilities. With reference to the former issue, clutter-
only datafiles are used, whereas concerning the latter, data containing both real target and
clutter are used. The target returns come from typical small boats (such as inflatable, wooden,
and patrol boats) appearing range-distributed at the resolution of the exploited radar system.
Range-time detection maps are shown, assessing the capability of the analyzed processors
to detect the aforementioned targets of great interest for homeland coastal security. Finally,
the performance improvement achieved by over-resolving the target is quantified.

1.5 References
The common denominator of this book is the detection theory (or hypothesis testing) which
is a branch of the statistical signal processing. A domain of application for detection theory is
radar and sonar systems or, generally speaking, sensing systems. As a matter of fact, the main
task of such systems is to decide for the presence of useful signals embedded in interference
background. The book by Lehman [19] represents a relevant contribution to detection theory
and treats the mathematical foundations of hypothesis testing and parameter estimation. The
works by Kay [23, 24] strike a balance between highly theoretical expositions and the more
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practical treatments, focusing extensively on real-world signal processing applications. The
mentioned books are complementary and oriented to practicing electrical engineers, PhD stu-
dents, as well as researchers, providing an invaluable introduction to parameter estimation
and detection theory. The book by Van Trees [14] applies hypothesis testing and parameter
estimation to detection, estimation, and modulation of continuous-time waveforms. Influential
and scholarly engineering texts are the book by Scharf [13] and Helstrom [38]. The former
covers four distinct topical lines: a preliminary review of the mathematical and statistical tools
used throughout the book, detection theory, estimation theory, and time series analysis. The
latter provides an introduction to signal-detection with emphasis on the design of optimal and
near-optimal detectors of weak signals in the presence of random noise for communication,
radar, sonar, and optical applications. Finally, textbooks [1,5,39,40] deal with several aspects
of modern radar detection systems and are oriented to the radar engineers.
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CHAPTER 2

Radar Detection in White Gaussian
Noise: A GLRT Framework
Ernesto Conte1, Antonio De Maio1, and Guolong Cui2

2.1 Introduction
This chapter is focused on the theory of radar detection in white Gaussian noise. The problem
is formulated in terms of a binary hypothesis test where the null hypothesis of target absence
is tested versus the composite alternative accounting for target presence. The interference
experienced by the radar is modeled as an additive zero-mean complex circular Gaussian ran-
dom process with known Power Spectral Density (PSD), whereas the useful contribution is
supposed known but for a scaling factor accounting for the target reflectivity and channel prop-
agation effects. The approach pursued to achieve target detection is based on the computation
of a sufficient statistic which performs data compression while keeping all the information
contained in the original observables. Additionally, it allows for a nice interpretation of the
detection pre-processing in terms of pulse compression (range processing) and pulse integra-
tion. After data compression by sufficiency, the Neyman–Pearson (NP) criterion (explained
in Chapter 1) is exploited to devise the optimum radar detector for both coherent and non-
coherent pulse trains; unfortunately the resulting test is not Uniformly Most Powerful (UMP).
In order to circumvent this drawback and come up with practically implementable receivers,
two different approaches are available [1,2]. The former is a Bayesian framework and models
the target unknown parameters as random quantities, the latter is a robust approach and sup-
poses the target parameters deterministic and unknown. While the Bayesian technique usually
leads to detectors tied up to the chosen a priori distribution for the unknown parameters, the
robust approach leads to decision rules independent of any prior assigned to the unknowns.
Leveraging on this desirable feature, in this chapter, the robust approach is followed and the
Generalized Likelihood Ratio Test (GLRT) criterion (see also Chapter 1) is used to design radar
detectors. As a result the classic coherent receiver, the linear and the square-law integrators are

1Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli “Federico
II”, Napoli, Italy
2School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu City, China
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obtained with reference to coherent (the first) and non-coherent pulse trains (the second and
the third). Finally, the performance of the NP detectors and the GLRTs are assessed in terms
of false alarm probability (PFA) and detection probability (PD) either using analytic equations
or resorting to numerical simulations.

The chapter is organized as follows. Section 2.2 is devoted to problem formulation while
Section 2.3 is focused on reduction by sufficiency. The design of the optimum NP receiver
is handled in Section 2.4 whereas the GLRT-based detectors are derived in Section 2.5. The
performance analysis is developed in Section 2.6. Finally, concluding remarks and suggestions
for further reading are given in Section 2.7.

2.2 Problem Formulation
Let us consider a stationary monostatic radar system that transmits a possibly modulated
coherent burst of pulses and collects data from a given azimuth-elevation cell during a time
interval usually referred to as dwell time. Denoting by sr(t) the baseband equivalent of the
received signal (obtained for instance through a standard heterodyne receiver), the classic radar
detection problem in the specific azimuth-elevation cell can be formalized as the following
binary hypothesis test{

H0 : sr(t) contains noise only,
H1 : sr(t) contains useful target signal plus noise.

(2.1)

Under the target plus noise hypothesis H1, the baseband equivalent of the received signal can
be written as [3]

H1 : sr(t) = e−j2πf0τ0

K−1∑
k=0

Akejφk p(t − kT − τ0)ej2πfd (t−τ0) + n(t), (2.2)

where

• f0 is the carrier frequency;
• K denotes the number of pulses;
• T is the pulse repetition time;
• p(t) represents the baseband equivalent of the generic pulse with length T1. Precisely,

p(t) =
N−1∑
i=0

a(i)u(t − iTp), (2.3)

with a(i) ∈ C, i = 0, . . . , N − 1, the radar code elements, and u(t) the chip pulse (or
sub-pulse) baseband equivalent whose length is Tp = T1/N and whose energy is assumed,
without loss of generality, unitary;

• τ0 is the round trip delay related to the target range R through the equation τ0 = 2R/c;
• fd is the target Doppler frequency that is related to the radial velocity vr through the equation

fd = 2vr/λ with λ the carrier wavelength;
• the complex amplitudes Akejφk , k = 0, . . . , K − 1, are unknown parameters accounting for

the target radar cross section, channel propagation effects, and other terms involved into the
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sr(t)
iTp + kT + t0

u∗(–t)
Z(k, i)

Figure 2.1 Sub-pulse matched filter.

K

N

Z (0, 0) Z (0, 1) Z (0, N – 1)

Z (K – 1, 0) Z (K – 1, 1) Z (K – 1, N – 1)

Slow-time

Fast-time

Figure 2.2 Fast-time/slow-time data matrix Z from the range-azimuth-elevation cell under test.

radar range equation. If Akejφk = Aejφ, k = 0, . . . , K − 1, then train is coherent, otherwise
it is referred to as non-coherent;

• n(t) is the additive noise component modeled as a complex circular zero-mean Gaussian
random process with constant and known PSD within the receiver bandwidth.

Under the H0 hypothesis, sr(t) contains only noise, namely

H0 : sr(t) = n(t). (2.4)

The received signal is filtered through a sub-pulse matched filter h(t) = u∗(−t) and sampled
at the time instants iTp + kT + τ0, i = 0, . . . , N − 1, k = 0, . . . , K − 1 (see Figure 2.1). The
samples Z(k, i), from the range cell under test, are arranged into the fast-time/slow-time matrix
Z whose columns contain the slow-time samples whereas its rows include those in fast-time
(see Figure 2.2).

Test (2.1) can be rewritten in terms of the data matrix Z, of size K × N , as{
H0 : Z = N,
H1 : Z = Qpa† + N,

(2.5)

where

• a = [a(0), . . . , a(N − 1)]† is the code vector assumed, without loss of generality, with
unitary norm;

• Q = diag(q) with q = ξ(0, fd)
[
A0ejθ0 , . . . , AK−1ejθK−1

]T
, θk = φk − 4πf0R0/c, and

ξ(τ, f ) =
∫ ∞

−∞
u(β)u∗(β − τ)ej2πf βdβ.
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• p = [1, ej2πfd T , . . . , ej2πfd T (K−1)
]T

is the temporal steering vector;
• the entries of the K×N matrix N, N(k, i) for k = 0, . . . , K−1, i = 0, . . . , N−1, are modeled

as independent and identically distributed (i.i.d.) complex circular zero-mean Gaussian
random variables with E[|N(k, i)|2] = σ2, i.e., N(k, i) ∼ CN (0, σ2).

In the following, the chip pulse is assumed Doppler tolerant (namely the expected range
of Doppler frequencies are such that ξ(0, fd) ≈ ξ(0, 0) = 1) and exp (j2πfdT1) ≈ 1. These
two conditions are sufficient to ensure a Doppler tolerant pulse p(t). Before concluding, it is
worth pointing out that, in radar applications, the parameters Akejθk are reasonably unknown
and to circumvent this drawback two different approaches are usually exploited. The former
is tantamount to modeling Akejθk as unknown deterministic parameters whereas the latter is a
Bayesian approach that assigns suitable priors to the unknowns. In this last case, the solution
to the testing problem is often tied up to the specific priors whereas the deterministic and
unknown parameter framework does not require any prior knowledge. Based on this guideline,
in this chapter, the robust approach is considered.

2.3 Reduction by Sufficiency
Problem (2.5) is a composite test where the simple hypothesis H0 is tested versus the composite
alternative H1 with parameter vector q and parameter space CK. To solve it, we follow the
approach of determining first a sufficient statistic that summarizes all the information in the
data about the parameters. After data reduction by sufficiency, which realizes a significant
data compression, we synthesize the optimum NP detector as the Likelihood Ratio Test (LRT)
computed from the sufficient statistic.

To this end, let us write the data probability density function (pdf) under the H1 hypothesis

fZ(Z|H1) = 1

πNKσ2NK
exp

⎧⎨⎩−
Tr
[(

Z − Qpa†
) (

Z − Qpa†
)†]

σ2

⎫⎬⎭ (2.6)

and recast the argument of the exponential as

− 1

σ2
Tr
(

ZZ†
)

− 1

σ2
Tr
(

Qpa†ap†Q†
)

+ 2

σ2
Re
{

Tr
(

Zap†Q†
)}

. (2.7)

Based on the Fisher–Neyman factorization theorem and minimality arguments concerning
regular exponential families [4, Chap. 5], we can claim that

(1) If the train is coherent then Q = AejθIK ; Aejθ is the sole unknown parameter; a minimal
sufficient statistic is one-dimensional and coincides with

L = Tr
(

Zap†
)
. (2.8)

(2) If the train is non-coherent then Akejθk are the unknown parameters; a minimal sufficient
statistic is K-dimensional and coincides with

L = [Z0,Rap∗(0), . . . , ZK−1,Rap∗(K − 1)
]T

, (2.9)
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where

Z = [ZT
0,R, ZT

1,R, . . . , ZT
K−1,R

]T
.

Remark: Notice that (2.9) represents a sufficient statistic also for the coherent train detec-
tion problem; however, in this last case, it is not minimal. Its computation requires a linear
filtering procedure matched to the radar code, namely, in radar jargon, a pulse compression.
Besides, with reference to the coherent case, since Tr

[
(Za) p†

] = Tr
[(

p†Z
)

a
]
, from a the-

oretical point of view it is possible to decide arbitrarily which processing between fast-time
(pulse compression) and slow-time (Doppler processing) to implement first. Nevertheless, it
is worth pointing out that from a practical point of view it is convenient to implement fast-time
processing before the slow-time one in order to avoid latencies. In Figure 2.3(a) and (b), the
block schemes for the computation of (2.8) and (2.9), respectively, are reported. The main
difference relies on the final coherent integration required in (2.8).

Z

Z

(a)

L

L

(b)

Computation of Eq. (2.8)

Computation of Eq. (2.9)

L(0) = Z0, Ra

L(0) = Z0, Ra

L(1) = Z1, Ra

L(1) = Z1, Ra

L(K – 1) = ZK – 1, Ra

L(K – 1) = ZK – 1, Ra

p*(0)

p*(1)

p*(K – 1)

p*(0)

p*(1)

p*(K – 1)

∑

Figure 2.3 Block schemes for the computation of Eq. (2.8) (a) and Eq. (2.9) (b).
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2.4 Optimum NP Detector and Existence of the UMP Test
The scope of this section is twofold: first to synthesize the optimum detector, according to the
NP criterion for problem (2.5); second, due to the composite nature of the H1 hypothesis, to
ascertain the existence of a UMP test.

The optimum detector, which maximizes the detection performance for a given false alarm
probability, is the LRT computed from the sufficient statistic. In order to proceed with the
synthesis, let us distinguish between the coherent and non-coherent cases.

2.4.1 Coherent Case
The LRT detector from the sufficient statistic (2.8) can be expressed as

fL(L|H1)

fL(L|H0)

H1
>
<
H0

γ , (2.10)

where fL(L|H0) and fL(L|H1) are the likelihood functions of the sufficient statistic under the
H0 and the H1 hypothesis, respectively. Further developments require specifying the afore-
mentioned functions. To this end, we observe that under the H0 hypothesis, L is distributed as
a complex circular zero-mean Gaussian random variable with variance Kσ2, i.e.,

L|H0 ∼ CN (0, Kσ2), (2.11)

whereas under the alternative, it is distributed as

L|H1 ∼ CN (KAejθ , Kσ2). (2.12)

It follows that the NP receiver can be written as

fL(L|H1)

fL(L|H0)
= exp

{
−|L − KAejθ|2 − |L|2

Kσ2

} H1
>
<
H0

γ. (2.13)

After some algebraic manipulations, taking the logarithm and absorbing inessential terms into
the detection threshold, (2.13) can be shown equivalent to

Re
{
e−jθL

} = Re
{

e−jθp†(Za)
} H1

>
<
H0

γ , (2.14)

where γ is a suitable modification of the original detection threshold in (2.10). In Figure 2.4,
a block scheme of the NP detector (2.14) for the coherent train is given, evidently it is not
implementable since it requires the exact knowledge of the phase θ; otherwise stated the UMP
test does not exist. Nevertheless, (2.14) is still important as it provides an upper-bound to the
performance of any practically feasible detection schemes.
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Z

p*(0)

p*(1)

p*(K – 1) e–jq

Re{.}

L(0) = Z0, Ra

L(1) = Z1, Ra

L(K – 1) = ZK–1, Ra

∑
L

Computation of Eq. (2.8)

Figure 2.4 Block scheme of the NP receiver (2.14) for the coherent pulse train.

2.4.2 Non-coherent Case
The LRT from the sufficient statistic (2.9) can be expressed as

fL(L|H1)

fL(L|H0)

H1
>
<
H0

γ , (2.15)

where the entries of L in (2.9) are independent complex circular Gaussian random variables.
Specifically, under H0, the k-th entry Zk,Rap∗(k) is distributed as

Zk,Rap∗(k) ∼ CN (0, σ2), (2.16)

whereas under H1

Zk,Rap∗(k) ∼ CN (Akejθk , σ2). (2.17)

As a consequence, the NP detector can be recast as

fL(L|H1)

fL(L|H0)
= exp

{
−
∑K−1

k=0 |L(k) − Akejθk |2 − L†L

σ2

} H1
>
<
H0

γ , (2.18)

which can be shown equivalent to

K−1∑
k=0

Re
{
Ake−jθk L(k)

} =
K−1∑
k=0

Re
{
Ake−jθk p∗(k)Zk,Ra

} H1
>
<
H0

γ , (2.19)

where γ is a suitable modification of the original detection threshold in (2.15). In particular, if
the amplitudes hold Ak = A, for k = 0, . . . , K − 1, (2.19) becomes equivalent to

K−1∑
k=0

Re
{
e−jθk L(k)

} H1
>
<
H0

γ. (2.20)
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A0e–jq0

A1e–jq1

AK–1e–jqK–1

Re {.}

Re {.}

Re {.}

p*(0)

p*(K – 1)
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Z
∑

L(0) = Z0, Ra

L(1) = Z1, Ra

L(K – 1) = ZK–1, Ra

Computation of Eq. (2.9)

Figure 2.5 Block scheme of the NP receiver (2.19) for the non-coherent pulse train.

Figure 2.5 describes a block scheme of the NP detector (2.20) for the non-coherent train.
First of all, fast-time processing is performed. Then the K outputs (corresponding to different
pulses) are (1) compensated for the phase terms induced by the lack of coherence; (2) weighted
according to the useful signal strength on that specific pulse. Finally, the real parts of the
aforementioned quantities are summed and compared with the detection threshold.

Concluding Remark: For both the coherent and the non-coherent cases, the NP detector is
not UMP and, hence, it is not practically implementable. In order to circumvent this drawback,
we resort to a robust design framework based on the GLRT that is tantamount to substituting
the maximum likelihood estimates of the unknown parameters in place of their exact values.

2.5 GLRT Design
This section is devoted to the design of GLRT detectors based on the previously obtained
sufficient statistics for both the coherent and the non-coherent pulse train models. We start
with the coherent case and write the GLRT as

maxA,θ fL(L|H1)

fL(L|H0)

H1
>
<
H0

γ. (2.21)

Applying the logarithm to both the sides of (2.21), the GLRT reduces to

max
A,θ

ln fL(L|H1) − ln fL(L|H0)
H1
>
<
H0

ln γ. (2.22)

The left hand side of the above equation can be computed as

max
A,θ

ln fL(L|H1) − ln fL(L|H0) = |L|2
Kσ2

− min
A,θ

(L − KAejθ)†(L − KAejθ)

Kσ2
≤ |L|2 (2.23)
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p*(K – 1)
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Z

L(0) = Z0, Ra
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∑
L

Computation of Eq. (2.8)

Figure 2.6 Block scheme of GLRT (2.24) for the coherent pulse train.

with equality if and only if Aejθ = L/K . Hence, the GLRT for the coherent case can be recast as

∣∣∣p†(Za)
∣∣∣ H1

>
<
H0

γ , (2.24)

with the suitable modified thresholdγ . A block scheme of detector (2.24) is shown in Figure 2.6;
after the coherent sum performed to compute the sufficient statistic (2.8), the magnitude of
the resulting complex number is compared with a detection threshold. Further insights in the
required processing can be obtained writing the decision statistic as∣∣∣∣∣

K−1∑
k=0

(
Zk,Ra

)
e−j2πkfd T

∣∣∣∣∣ ,
namely as the discrete time Fourier transform of the fast-time samples after pulse compression.
This expression explicitly highlights that with the same range processing (namely exploiting
the same pulse compression outputs), it is possible to test all the Doppler cells by just changing
the value of fd .

An important remark is now in order: detector (2.24) coincides with the NP test obtained
modeling the target phase as a uniformly distributed random variable within the interval [0, 2π[
[5, Chap. 15, pp. 568].

As to the non-coherent case, we have to distinguish between two different situations:

(1) The amplitudes of the returns are equal, e.g., Ak = A, k = 0, . . . , K − 1;

(2) The amplitudes Ak represent K unknown parameters without any known a priori
relationship.

Case 1, Non-coherent pulse train with one and the same amplitude: The GLRT is

max
A,θ0,...,θK−1

fL(L|H1)

fL(L|H0)

H1
>
<
H0

γ , (2.25)



30 CHAPTER 2 • Radar Detection in White Gaussian Noise: A GLRT Framework

Z

L(0) = Z0, Ra

L(1) = Z1, Ra

L(K – 1) = ZK–1, Ra

∑

Figure 2.7 Block scheme of the linear integrator (2.29) for the non-coherent pulse train.

or equivalently,

−min
A

K−1∑
k=0

[
min
θk

∣∣L(k) − Aejθk
∣∣2 − |L(k)|2

] H1
>
<
H0

γ. (2.26)

To perform the optimizations over θk , we observe that the reverse triangular inequality [6]
implies ∣∣L(k) − Aejθk

∣∣2 � ||L(k)| − A|2 , k = 0, . . . , K − 1, (2.27)

with equality if θk = ∠ L(k). As a consequence, test (2.26) becomes equivalent to

−min
A

K−1∑
k=0

[
A2 − 2A|L(k)|

] H1
>
<
H0

γ. (2.28)

Hence, optimizing over A, the GLRT can be finally expressed as

K−1∑
k=0

|L(k)|
H1
>
<
H0

γ (2.29)

and is usually referred to as linear non-coherent integrator. A block scheme of the linear non-
coherent detector is shown in Figure 2.7. Observe that the final multipliers involved in the
computation of the sufficient statistic (2.9) are omitted because any phase information is lost
due to the presence of the modulus operation, i.e., |L(k)| = |Zk,Ra| . This also justifies why
practically implementable non-coherent processing is unable to provide any information on
the actual target Doppler.

Case 2, Non-coherent pulse train with different amplitudes: The GLRT is given by

max
A0,...,AK−1,θ0,...,θK−1

fL(L|H1)

fL(L|H0)

H1
>
<
H0

γ , (2.30)



2.5 • GLRT Design 31

2

2

2

Z

L(0) = Z0, Ra

L(1) = Z1, Ra

L(K – 1) = ZK–1, Ra

∑

Figure 2.8 Block scheme of the square-law integrator (2.32) for the non-coherent pulse train.

or equivalently,

−
K−1∑
k=0

[
min
Ak ,θk

∣∣L(k) − Akejθk
∣∣2 − |L(k)|2

] H1
>
<
H0

γ. (2.31)

Optimizations over Ak and θk yield Ak = |L(k)| and θk = ∠L(k) for k = 0, . . . , K − 1. The
GLRT is thus equivalent to

K−1∑
k=0

|L(k)|2
H1
>
<
H0

γ , (2.32)

which is usually referred to as square-law non-coherent integrator. A block scheme of the linear
law detector is shown in Figure 2.8.

Concluding Remarks: The linear detector (2.29) can be also obtained as the high Signal-to-
Noise Ratio (SNR) approximation of the NP receiver [5] designed for Ak = A, k = 0, . . . , K−1,
and i.i.d. target phases modeled as uniformly distributed within [0, 2π[. Moreover, under the
same assumptions on the amplitudes and phases, (2.32) can be interpreted as the approximation
of the NP receiver in the low SNR regime [5]. Finally, detector (2.32) is the optimum NP test
designed assuming i.i.d. Rayleigh distributed amplitudes Ak , k = 0, . . . , K −1, and i.i.d. target
phases (statistically independent from the amplitudes) uniformly distributed within [0, 2π[.

Before concluding, a discussion on the robustness of the considered GLRT approach with
respect to the dual Bayesian framework is necessary. While a Bayesian receiver is based on
the assignment of some priors for the unknown parameters, the GLRT does not require this
knowledge. As a result, the former is tied up to the specific parameter fluctuation law whereas
the latter is one and the same independent of the considered priors and their distributional
parameters. With reference to the specific detection problem considered here, these two con-
siderations are in order.

(1) For the coherent case, assuming a uniformly distributed phase within [0, 2π[, the resulting
Bayesian detector is one and the same independent of the amplitude prior. Moreover, it
also coincides with the GLRT.

(2) For the non-coherent case, assuming statistically independent and uniformly distributed
phases, the Bayesian approach leads to detectors tied up to the fluctuation laws of the
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return amplitudes (specifically on their joint pdf). As a consequence mismatches between
the design and actual fluctuation laws may lead to performance degradations. On the
contrary, the GLRT is a universal receiver and, as already pointed out, does not require
any prior knowledge. Finally, in general, it is not statistically equivalent to the Bayesian
detector (an exception is the aforementioned i.i.d. Rayleigh fluctuating amplitudes case).

2.6 Performance Analysis
This section is devoted to the performance analysis of the detectors presented in Sections 2.4
and 2.5. To this end, analytic expressions for the false alarm probability (PFA) and detection
probability (PD) are provided except for the linear non-coherent integrator (2.29) whose per-
formance is obtained via Monte Carlo simulations due to the lack of easily manageable analytic
formulas. First of all, the coherent case is considered: the GLRT performance is compared with
the optimum benchmark curve ensured by the clairvoyant structure (2.14), and the effect of
the coherent integration gain is assessed. Then, the non-coherent situation is studied: a per-
formance comparison among the linear, square-law, and optimum non-coherent integration is
conducted. Finally, the effect of non-coherent integration is discussed.

2.6.1 Coherent Case
Let us focus on the NP detector for coherent pulse trains (2.14) and denote by l1 =
Re
{
e−jθp†Za

}
. Under the H1 hypothesis, e−jθp†Za is a complex circular Gaussian random

variable with average KA and variance Kσ2, i.e., e−jθp†Za ∼ CN (KA, Kσ2). Hence, l1 is a
real Gaussian random variable with mean μl1 = KA and variance σ2

l1
= Kσ2/2, namely

fl1 (t|H1) = 1√
2πσl1

exp

(
− (t − μl1 )2

2σ2
l1

)
. (2.33)

This implies that PD can be obtained as

PD =
∫ ∞

γ

fl1 (t|H1)dx = Q

(
γ − KA√

Kσ2/2

)
, (2.34)

where Q(·) is the Q-function [7, p. 6]:

Q(x) = 1√
2π

∫ ∞

x
exp

(
− t2

2

)
dt. (2.35)

As a by-product, PFA can be obtained setting A = 0 in (2.34), i.e.,

PFA = Q

(
γ√

Kσ2/2

)
. (2.36)

Using the inverse Q-function, the Receiver Operating Characteristic (ROC) can be com-
puted as

PD = Q
(

Q−1 (PFA) − √
2KSNR

)
, (2.37)
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where SNR per pulse is given by

SNR = A2

σ2
. (2.38)

Let us now focus on the GLRT in (2.24) and denote by g1 = |p†Za|. As already highlighted,
under the H1 hypothesis, p†Za ∼ CN (KAejθ , Kσ2). Thus, g1 is Rician distributed

fg1 (z|H1) = 2z

Kσ2
exp

(
− z2 + K2A2

Kσ2

)
I0

(
2zA

σ2

)
U(z), (2.39)

where U(z) is the unit-step function

U(z) =
{

1, z ≥ 0,
0, z < 0,

(2.40)

and Iv(x) is the modified Bessel function of the first kind and order v,

Iv(x) =
∞∑

m=0

1

m!�(m + v + 1)

( x

2

)2m+v
. (2.41)

It follows that PD can be obtained as

PD =
∫ ∞

γ

fg1 (z|H1)dz = Q1

⎛⎝√2KA2

σ2
,

√
2γ2

Kσ2

⎞⎠, (2.42)

where Qm(a, b) denotes the generalized Marcum function of order m, which can be expressed
in terms of the following integral [8, Eq. (21)]:

Qm(a, b) =
∫ ∞

b

xm

am−1
exp

{
−x2 + a2

2

}
Im−1(ax)dx. (2.43)

Under the H0 hypothesis, p†Za ∼ CN (0, Kσ2). Hence, g1 is Rayleigh distributed with
parameter σ2

g1
= Kσ2/2, i.e., its pdf is

fg1 (z|H0) = 2z

Kσ2
exp

(
− z2

Kσ2

)
U(z). (2.44)

Thus, PFA can be computed as

PFA = exp

(
− γ2

Kσ2

)
. (2.45)

Substituting (2.45) into (2.42), the ROC is expressed as

PD = Q1

(√
2KSNR,

√−2 ln PFA

)
, (2.46)

where SNR (per pulse) is given in (2.38).

Remark: Equations (2.37) and (2.46) clearly highlight the effect of coherent integration.
Precisely, the coherent equivalent SNR (SNRceq) after coherent integration can be obtained
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by multiplying the single pulse SNR and the number of transmitted pulses, namely SNRceq =
KSNR.

In Figure 2.9, the normalized detection thresholds γ

σ
√

K
are plotted versus PFA using (2.36)

for the NP receiver (2.14) and (2.45) for the GLRT (2.24). As expected, being PFA versus the
normalized threshold a complementary cumulative distribution function, the larger PFA, the
lower the detection threshold. Moreover, the NP receiver (2.14) requires a lower normalized
threshold than the GLRT (2.24). Precisely for PFA ∈ [10−8, 10−4] the threshold percentage
change, defined as

1 − Q−1 (PFA)√
2 log 1

PFA

,

ranges within the interval [0.08, 0.13]. This induces a penalization in the GLRT detection
performance even if the GLRT threshold growth is also due to the structure of the deci-
sion statistics in (2.14) and (2.24). In fact, the former is dominated by the latter, namely
Re
{
e−jθp†Za

} ≤ ∣∣p†Za
∣∣.

In Figure 2.10(a) and (b), the ROC of the NP receiver and GLRT is plotted for SNR = 3 dB
and K ∈ {1, 4, 16} using two different scales: a linear scale, in Figure 2.10(a), and a logarithmic
scale, in Figure 2.10(b), necessary to emphasize the PD behavior for low PFA values. The curves
illustrate that the larger PFA and K , the higher PD. Specifically, with reference to the NP receiver,
PDs are approximately 0.04, 0.6, and 1 at PFA = 10−4 for K = 1, 4, and 16, respectively. As
to the GLRT, they are approximately 0.01, 0.4, and 1, respectively.

In Figure 2.11, PD of the GLRT and the clairvoyant structure is plotted versus KSNR for
PFA = 10−6. The curves illustrate that the GLRT requires about 0.6 dB higher KSNR than
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Figure 2.11 PD versus KSNR for the NP detector (2.14) and the GLRT (2.24), for PFA = 10−6.

the NP detector at PD = 0.9 and about 0.7 dB at PD = 0.5. It is finally worth mentioning the
universality of the representation in Figure 2.11, in the sense that it completely characterizes
the performance of the considered coherent detectors for any values of K and single pulse SNR.

2.6.2 Non-coherent Case
Let us focus on the clairvoyant structure (2.19) and denote by

l2 =
K−1∑
k=0

Re
{
Ake−jθk p∗(k)Zk,Ra

}
,

the decision statistic for non-coherent pulse trains. Under the H1 hypothesis,
∑K−1

k=0 ×
Ake−jθk p∗(k)Zk,Ra is a complex circular Gaussian variable with average

∑K−1
k=0 A2

k and variance∑K−1
k=0 A2

kσ
2, i.e.,

K−1∑
k=0

Ake−jθk p∗(k)Zk,Ra ∼ CN
(

K−1∑
k=0

A2
k ,

K−1∑
k=0

A2
kσ

2

)
.

Thus, l2 follows a real Gaussian distribution with average μl2 = ∑K−1
k=0 A2

k and variance

σ2
l2

=∑K−1
k=0 A2

kσ
2/2. This implies that PD can be obtained as

PD = Q

⎛⎜⎝ γ −∑K−1
k=0 A2

k√∑K−1
k=0 A2

kσ
2/2

⎞⎟⎠. (2.47)
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Under the H0 hypothesis, Ake−jθk p∗(k)Zk,Ra is a complex circular zero-mean Gaussian
variable with variance A2

kσ
2, i.e., Ake−jθk p∗(k)Zk,Ra ∼ CN (0, A2

kσ
2). Thus, l2 follows a

real zero-mean Gaussian distribution with variance σ2
l2

= ∑K−1
k=0 A2

kσ
2/2. Hence, PFA can be

computed as

PFA = Q

⎛⎜⎝ γ√∑K−1
k=0 A2

kσ
2/2

⎞⎟⎠. (2.48)

Note that if Ak = A, k = 0, . . . , K − 1, the NP detector for the non-coherent case reduces
to (2.20), whose PD and PFA are, respectively, the same as those obtained in the coherent case
(2.34) and (2.36).

Using the inverse Q-function and PFA in (2.48), the ROC of (2.47) can be recast as

PD = Q
(

Q−1 (PFA) −√2KSNReq

)
, (2.49)

where SNReq denotes the equivalent SNR per pulse, defined as

SNReq = 1

K

K−1∑
k=0

A2
k

σ2
. (2.50)

A careful comparison between (2.37) and (2.49) reveals that they share the same functional
expression with the only difference due to the presence of SNReq (2.50) in place of the
single pulse SNR (2.38). In other words, the optimum non-coherent processing still provides
a coherent integration gain.

As to the GLRT of case (1) (Eq. (2.29)), there are no known easily manageable analytical
expressions PFA and PD. Hence, in the following, it is only considered the analytic performance
evaluation of the square-law detector (2.32), whereas Monte Carlo simulations are used to
analyze the behavior of (2.29).1 To this end, denote by

g2 =
K−1∑
k=0

|L(k)|2 (2.51)

and define r = g2/σ
2 as the normalized decision statistic. Based on the previous assumptions,

it is not difficult to show that under H1, r is a complex non-central chi-square random variable
[9] with K Degrees of Freedom (DOFs) and non-centrality parameter χK = ∑K−1

k=0 A2
k/σ

2, i.e.,

fr(r|H1) =
(

r

χK

)(K−1)/2

e−r−χK IK−1
(
2
√

rχK
)

U(r). (2.52)

1For the linear detector, it is set Ak = A for k = 0, . . . , K − 1.
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As a consequence, PD can be obtained as [10]

PD = P{g2 ≥ γ|H1} = P{g2/σ
2 ≥ γ/σ2|H1}

= QK

⎛⎝
√√√√2

K−1∑
k=0

A2
k/σ

2,
√

2γ/σ2

⎞⎠
= QK

(√
2KSNReq,

√
2γ/σ2

)
. (2.53)

This last expression clearly shows the lack of a coherent integration gain because the functional
relationship between PD and the two arguments in the generalized Marcum function depends
on the number of pulses K .

Under the H0 hypothesis, r is distributed as a complex central chi-square random variable
[9] with K DOFs, namely its pdf is given by

fr(r|H0) = rK−1

(K − 1)!e−rU(r). (2.54)

Hence, PFA can be computed as

PFA = P{g2 ≥ γ|H0} = P{g2/σ
2 ≥ γ/σ2|H0}

= 1

�(K)
γ inc(K , γ/σ2), (2.55)

where γ inc(n, x) denotes the incomplete Gamma function [11, 8.350-2, p. 899], i.e.,

γ inc(n, x) =
∫ ∞

x
tn−1 exp (−t)dt. (2.56)

Moreover, (2.55) can be rewritten as a finite summation, i.e.,

PFA = exp
(
− γ

σ2

) K−1∑
k=0

1

k!
( γ

σ2

)k
. (2.57)

Notice that for K = 1, (2.57) reduces to (2.45), whereas (2.53) becomes (2.42).
In Figure 2.12, the ROC of the NP detector (using (2.49)), of the linear law detector

(exploiting Monte Carlo simulations), and of the square-law detector (using (2.53)) is plotted.
Similar behaviors as in Figure 2.10 can be observed. However, the performance gaps between
the NP receiver and GLRTs become larger and larger as K increases. This can be explained
observing that the clairvoyant structure coherently integrates the available samples whereas
the GLRTs, neglecting the phase information on each pulse, only perform a non-coherent
integration. Hence, the growth in the performance loss of the GLRTs can be justified observing
that the amount of information lost by the non-coherent integration increases as K increases.

In Figure 2.13, PDs of the clairvoyant NP receiver, the linear law and the square-law non-
coherent detectors are plotted versus SNReq for PFA = 10−6 and some values of K . The
curves highlight that the larger K , the higher the detection probability. Moreover, the loss of
the GLRTs with respect to the NP detector becomes heavier and heavier as K increases, even if
the performance gaps between the square-law and the linear detectors are almost insignificant.
Otherwise stated, defining the integration gain as the ratio between the single pulse SNR,
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Figure 2.12 ROC of the NP detector, obtained using (2.49), of the linear law detector, obtained
using Monte Carlo simulations, and of the square-law detector, obtained using (2.53),
for SNReq = 3 dB and K ∈ {1, 4, 16}. (a) Linear scale and (b) logarithmic scale.

necessary to achieve a specified detection performance for a given PFA level, and the pre-
integration SNR required such that, after integration of K pulses, the specified detection and
false alarm performances are met, it can be observed that the gain experienced by the GLRTs in
the non-coherent case is smaller than K which is the value corresponding to coherent detection
(namely the value achieved by the clairvoyant receiver).



40 CHAPTER 2 • Radar Detection in White Gaussian Noise: A GLRT Framework

–5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNReq

P D

NP, K = 1
Square law, K = 1
NP, K = 4
Square law, K = 4
Linear law, K = 4
NP, K = 16
Square law, K = 16
Linear law, K = 16
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2.7 Conclusions and Further Reading
This chapter has considered classic radar detection in the presence of white Gaussian noise.
The proposed approach first performs a compression of the observation space through reduc-
tion by sufficiency. Then detector design is attacked in the reduced dimensional space. The
optimum NP detector is unfortunately not implementable for both the coherent and the non-
coherent pulse trains. Thus, the robust GLRT-based approach is exploited to design practically
implementable receivers that are canonical, namely independent of any prior assigned to the
unknown parameters. This construction, depending on the coherency of the train, leads to either
the classic coherent radar detector or linear and square-law integrators. Hence, a performance
analysis of the obtained detection structures is conducted through analytic equations, where
possible, or exploiting numerical simulations.

Before concluding, some additional references to the considered problem are provided.
Meyer and Mayer [12] is a classic book on radar detection: therein many detection curves
for different radar scenarios can be found. In Reference 13, a concise but effective treatment
of the problem is presented discussing also the constant false alarm probability property. Tar-
get fluctuation and interesting practical issues associated with the search/detection function are
available in References 14 and 15. In Chapter 15 of Reference 5, the dual Bayesian approach
is presented modeling the phase of target returns as statistically independent uniformly dis-
tributed random variables. The performance analysis of classic radar receivers in the presence
of general target fluctuation models is dealt with in References 16–18, and, for possibly cor-
related target echoes in Reference 8. Finally, a detailed analysis when the interference is no
longer white and follows a compound-Gaussian model is presented in Reference 19.
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CHAPTER 3

Subspace Detection for Adaptive
Radar: Detectors and Performance
Analysis
Ram S. Raghavan1, Shawn Kraut2, and
Christ D. Richmond3

3.1 Introduction
Coherent processing of various forms of multidimensional signals is commonplace in radar
applications. Space–time adaptive processing in radars [1–3] is a well-established example
of coherent processing involving the domains of space (multiple receiving antenna elements
separated spatially) and time (multiple pulse returns at each antenna element). Examples also
include space, time, and transmit/receive polarization domains. More examples of multidimen-
sional processing are being explored for coherently processing signals received from coherent
transmission of multiple waveforms in the context of multiple-input multiple-output radars
[4, 5]. For multidimensional signals, the usual definition of the Signal of Interest (SOI) as a
rank 1 signal needs to be broadened to include signals that belong to a known (or hypothesized)
subspace. The subspace signal model includes the usual rank 1 model as a special case and
allows for the modeling of received signal in multiple domains. For example, a single transmit
signal at high frequencies can be received as sky waves with different polarizations and mul-
tiple modes after refraction and reflection from different layers of the Earth’s ionosphere as
described in References 6–8. The different modes of the received signals span a subspace and
can be jointly detected by a subspace detector if the signal subspace is known. The subspace

1Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, USA
2NorthWest Research Associates, Monterey, CA, USA
3MIT Lincoln Laboratory, Lexington, MA, USA
This work was supported by the Air Force Office of Scientific Research under contract 14RY05COR and by the
Department of the Air Force under contract FA8721-05-C-0002. Opinions, interpretations, conclusions, and recom-
mendations are those of the authors and are not necessarily endorsed by the United States Government.
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signal model in addition provides a means for characterizing uncertainties in representing the
received signal in some cases. Uncertainties in modeling the received signal from a hypothe-
sized direction can result from position errors of sensor phase-centers and near-field multipath
effects, for example. From the perspective of signal detection in clutter, interference, and noise,
the ability to process multidimensional signals coherently needs to take into account the large
numbers of nuisance parameters’ typically inherent in these problems. These are parameters
unknown to the receiver and must be estimated typically for purposes of interference cance-
lation prior to signal detection. The problem of detecting a subspace signal in a given test
data vector can be formulated as a statistical hypothesis testing problem. An approach that has
proven effective in dealing with nuisance parameters are invariant hypothesis tests [9,10]. The
general approach is to identify a set of matrices such that the linear transformation of the data
by any member of the set leaves the original hypothesis testing problem unchanged, although
the original nuisance parameters themselves are changed as a result. These transformations are
generally easily determined given the signal model. Any hypothesis test in this class is referred
to as an invariant test, and the detection statistic of all invariant tests can be constructed from
a maximal invariant statistic. The Generalized Likelihood Ratio Test (GLRT) [11, 12], the
Adaptive Matched Filter (AMF) [13], and Adaptive Coherence Estimator (ACE) (see Eq. (22)
in Reference 14) [15–18], and references within, are examples of three well-known invariant
tests commonly used for the detection of rank 1 signals in clutter, interference, and noise. Also
of interest are a number of detectors devised for a variety of constraints [19–26] and references
within. If N is the size of the signal vector, maximal invariants for the detection of a subspace
signal (of dimension 1 ≤ M < N in unknown clutter, interference, and noise was shown to be a
two-dimensional statistic in Reference 27, where the joint Probability Density Function (PDF)
of the two-dimensional statistic was obtained conditioned on both the null hypothesis and
the alternative hypothesis. The detection performance of the subspace GLRT was analyzed in
Reference 27 for the case of no signal mismatch errors. In this chapter, we extend the three
signal detectors above to a subspace signal model. Analytical expressions derived include
results of signal mismatch errors. The analysis is applied to an example to illustrate the use of
subspace detectors to mitigate detection loss resulting from signal mismatch errors.

The rest of the chapter is organized in the following manner: Section 3.2 provides a brief
introduction to the problem of signal detection in zero-mean complex Gaussian noise when
the covariance matrix of the noise is known. We introduce the Neyman–Pearson detector
that implements the likelihood ratio test and allows the receiver to select a preset probability
of false alarm. Two cases are considered: (i) detection of a known signal vector in zero-
mean multivariate complex Gaussian noise and (ii) detection of a known signal with unknown
overall phase in zero-mean complex Gaussian noise. The hypothesis tests in each case reduce
to comparing a statistic referred to as a sufficient statistic to a preset threshold. Expressions
for the probability of detection and probability of false alarm for these cases are summarized.
The problem of detecting a subspace signal in zero-mean complex Gaussian interference-plus-
noise, when the covariance matrix of the interference-plus-noise is unknown, is introduced in
Section 3.3. The section describes a subspace signal model and transformations to the data
which leave the original hypothesis testing problem unchanged. A two-dimensional statistic
referred to as a maximal invariant statistic for the subspace signal detection problem is defined.
Hypothesis tests for the subspace signal detection problem reduce to comparing a statistic
derived from a maximal invariant statistic to a preset threshold. The key is that the invariant
tests enable the test threshold to be set based on a preset probability of false alarm even
though the covariance matrix of the clutter-plus-interference-plus-noise is unknown – this
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feature is referred to as the Constant False Alarm Rate (CFAR) property. Maximal invariant
statistic is thus the minimum information (as a statistic) required to implement any invariant
hypothesis test. For the subspace signal model, a maximal invariant statistic is shown to be a
two-dimensional (i.e. a vector) statistic. A maximal invariant statistic is not a unique vector
statistic however, since any reversible transform applied to a maximal invariant statistic is
also a maximal invariant statistic. In the case when the signal model is not mismatched with
the actual signal model, the two scalar quantities that comprise a maximal invariant statistic
introduced in Section 3.3 are: an estimate of signal-to-interference-plus-noise ratio (SINR) and
an estimate of the loss in SINR due to finite sample effects. Thus, it is possible to derive an
infinite number of invariant hypothesis tests from these two scalar statistics (see Reference 28
for example). We only consider three specific tests from the class of the invariant hypothesis
tests in this chapter: (i) the subspace GLRT, (ii) the subspace AMF test, and (iii) the subspace
ACE test. The three hypothesis tests and analytical expressions for the probability of detection
PD and probability of false alarm PFA of the tests are given in Section 3.4. Performance results
along with an application to illustrate the mitigation of detection performance loss due to signal
mismatch errors are given in Section 3.5. Summary and conclusions are provided in Section 3.6.
Materials of a supplementary nature are given in the Appendices. The subspace versions of
the GLRT, AMF test, and ACE test are derived using the standard approach for the rank 1
signal case in Appendix 3.A for completeness. The proofs for the two-dimensional maximal
invariant statistic for the subspace detectors are given in Appendix 3.B, and the joint PDF
of maximal invariant statistic conditioned on the null hypothesis and alternative hypothesis
including the case of mismatch between the hypothesized signal model and the actual signal
model is derived in Appendix 3.C. A number of helpful results and distributions relevant to
this work are summarized in Appendix 3.D.

3.2 Introduction to Signal Detection in Interference
and Noise

Chapter 2 of this book provided an introduction to radar detection in white Gaussian noise
and the GLRT framework. This section provides a very brief review of the detection problem
specifically for signals modeled as vectors. Later sections of this chapter extend these ideas to
the subspace-based adaptive detection problem. The reader is referred to the following for a
thorough introduction to the general problem of signal detection in noise [29–35] for a variety
of applications that include statistical communications, radar, and sonar. Classical references
from mathematical statistics and multivariate statistical analysis include [36–40]. We begin
with the basic problem of signal detection in noise when all parameters are known. The section
provides an introduction that leads into the main topic of this chapter, where the problem of
detecting a signal contained in a known subspace in complex (circularly symmetric), zero-mean
colored Gaussian noise with unknown covariance matrix is considered.

Given a data vector y ∈ CN×1, the basic problem is to determine if (i) the vector comprises
only clutter-plus-interference-plus-noise – referred to as the null hypothesis H0 or (ii) the data
vector contains a signal p ∈ CN×1 in addition to the clutter, interference, and noise – referred to
as the alternative hypothesis H1. The detection problem is formulated as a binary hypothesis
testing problem, and from the perspective of applications to radar, it is the Neyman–Pearson
criterion that is typically used since the approach provides control over the probability of
false alarm, which is the conditional probability that the hypothesis test declares the signal
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to be present in the data vector when in fact no signal is present (i.e. probability of detec-
tion conditioned on hypothesis H0). For applications that typically detect signals of interest
continuously over a large surveillance volumes comprising multiple ranges, elevation angles,
azimuth angles, and multiple Doppler frequencies, controlling the probability of false alarm is
important since it translates to controlling the false alarm rate for a given data throughput. For
systems with high input data rates, control over the false alarm rate ensures that the processing
is not overwhelmed by detections which may in fact be false alarms.

Let f (y|H0) and f (y|H1) denote the PDF of a test vector y conditioned on the null hypothesis
H0 and the alternative hypothesis H1 respectively. For a given vector y ∈ CN×1, the quantity
f (y|Hk); k = 0, 1 when viewed as a function of Hk is referred to as a likelihood function.
In the Neyman–Pearson detector, the presence of an additive signal p ∈ CN×1 in a given data
vector y ∈ CN×1 is formulated as a likelihood ratio test expressed as follows:

L(H|y) = f (y|H1)

f (y|H0)

H1
>
<
H0

η. (3.1)

Given a preset threshold η the above detector selects the alternative hypothesis (i.e. sets
H = H1) when the likelihood ratio exceeds the threshold η and selects the null hypothesis (i.e.
sets H = H0) otherwise. The above likelihood ratio test generally partitions the vector space
y ∈ CN×1 into two disjoint regions D0 and D1, such that D0 ∪ D1 = CN×1 and D0 ∩ D1 = φ –
in most cases of interest the condition where the likelihood ratio exactly equals the threshold
has zero probability. The probability of detection PD, which is the conditional probability that
hypothesis H1 is selected when the data vector has the additive signal and the probability of
false alarm PFA, which is the conditional probability that hypothesis H1 is selected when the
data vector comprises only clutter-plus-interference-plus-noise and no additive signal are given
by the following:

PD =
∫

y∈D1

f (y|H1)dy,

PFA =
∫

y∈D1

f (y|H0)dy.
(3.2)

For a specified probability of false alarm, the threshold levelη required in (3.1) is determined
from the second expression in (3.2).

In this chapter, clutter, interference, and noise are modeled as complex, circularly sym-
metric multivariate Gaussian random vectors as summarized in Appendix 3.A. We begin by
summarizing the form of the Neyman–Pearson detector for the simple case of signal detection
in multivariate zero-mean complex Gaussian noise.

3.2.1 Detecting a Known Signal in Colored Gaussian Noise
For a known signal vector p ∈ CN×1, the hypothesis test is: H1 : y ∼ CN (p, R) vs.
H0 : y ∼ CN (0, R), where symbol CN (m, R) denotes the circularly symmetric complex
Gaussian distribution with mean m and covariance matrix R. The covariance matrix
R of the noise is assumed to be a known Hermitian positive definite matrix. Pre-
multiplication of the data vector y by R−1/2 whitens the noise vector, and the cir-
cularly symmetric random variable p†R−1y = Re(p†R−1y) + j Im(p†R−1y) is distributed
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as: p†R−1y ∼ CN
(
p†R−1p, p†R−1p

)
for H1 and as ∼ CN

(
0, p†R−1p

)
for H0. The random

variables Re( p†R−1y) and Im( p†R−1y) are statistically independent, and Im( p†R−1y) has the
same density function for both hypotheses. The mean of the real-valued statistic Re( p†R−1y)
is 0 under hypothesis H0 and is p†R−1p under hypothesis H1. The variance of Re( p†R−1y) is
σ2 = p†R−1p/2 under both the null and the alternative hypotheses. The likelihood ratio test in
(3.1) is equivalently expressed as follows – obtained by taking the logarithm of the likelihood
ratio:

Re(p†R−1y)
H1
>
<
H0

η0. (3.3)

The probability of detection and probability of false alarm are given by:

PD = 1√
2πσ

∫ ∞

η0

e−(z−p†R−1
p)2/2σ2

dz = 1

2

[
1 − erf

(
(η0 − p†R−1p)√

p†R−1p

)]
= 1

2
erfc

(
(η0 − p†R−1p)√

p†R−1p

)
,

PFA = 1√
2πσ

∫ ∞

η0

e−z2/2σ2
dz = 1

2

[
1 − erf

(
η0√

p†R−1p

)]
= 1

2
erfc

(
η0√

p†R−1p

)
. (3.4)

In the above, erf(x) and erfc(x) are the error function and the complementary error function
respectively as defined in [41]:

erf(x) = 2√
π

∫ x

0
exp(−y2)dy,

erfc(x) = 2√
π

∫ ∞

x
exp(−y2)dy = 1 − erf(x).

(3.5)

For a given probability of false alarm (PFA), the threshold η0 in (3.3) is determined from:

η0 =
√

p†R−1p erfc−1(2PFA). (3.6)

The function x = erfc−1(p); 0 ≤ p ≤ 2 is the inverse complementary error function and is
defined such that erfc(x) = p. As PFA monotonically decreases in the interval 0.5 ≥ PFA > 0 the
threshold η0 monotonically increases in the interval 0 ≤ η0 < ∞. Note that the threshold η0 is
negative for 1 ≥ PFA > 0.5.

3.2.2 Detecting a Known Signal with Unknown Phase
in Zero-Mean Colored Gaussian Noise

For a known vector p ∈ CN×1, the two hypotheses are: H1 : y ∼ CN
(
p e jα, R

)
vs.

H0 : y ∼ CN (0, R). The phase α of the signal is unknown. Since the phase of the circu-
larly symmetric noise is also unknown, integrating over the PDF of the phase, the PDF of the
random variable z = |p†R−1y| is given by:

f (z|H1) = z
σ2

e−(a2+z2)/2σ2
I0

( za
2σ2

)
; z ≥ 0,

f (z|H0) = z
σ2

e−z2/2σ2
; z ≥ 0.

(3.7)



48 CHAPTER 3 • Subspace Detection for Adaptive Radar

In the above, a = p†R−1p and 2σ2 = p†R−1p.

And the likelihood ratio test in (3.1) is:

L(H|z) = e−(p†R−1p)I0(z)
H1
>
<
H0

η. (3.8)

I0(z) is the modified Bessel function of order 0 and is a monotonically increasing function
of the argument. The detection statistic in the likelihood ratio test can equivalently be replaced
by any monotonically increasing function of the argument z = |p†R−1y|. Thus the test in (3.8)
is equivalent to the following with the normalized statistic:

|p†R−1y|2
(p†R−1p)

H1
>
<
H0

η0. (3.9)

For purposes of detecting the signal p, the data vector y can be reduced to a single statistic
|q|2 = |p†R−1y|2/(p†R−1p), which is referred to as a sufficient statistic. Using Proposition 3.1,
the statistic |q|2 = |p†R−1y|2/(p†R−1p) has a non-central complex Chi-squared distribution
with 1 complex degree of freedom and non-centrality parameter: c = (p†R−1p) for hypothesis
H1 (i.e. |q|2 ∼ χ2

1(c)), which is also referred to as the Ricean distribution [33]. For hypothesis H0,
the sufficient statistic has a central complex Chi-squared distribution with 1 complex degree of
freedom |q|2 ∼ χ2

1, which is also the exponential density with the expected value of the random
variable of 1. The probability of false alarm and probability of detection are given by:

PFA =
∫ ∞

η0

e−ydy = e−η0 ,

PD =
∫ ∞

η0

I0(2
√

yc) e−(y+c)dy = Q1(
√

2c,
√

2η0).
(3.10)

The second integral above is expressed in terms of the generalized Marcum Q-function
QM (a, b) defined as [30, 42–45]:

QM (a, b) =
∫ ∞

b
x
( x

a

)M−1
e−(x2+a2)/2IM−1(ax)dx; M ≥ 1. (3.11)

3.3 Subspace Signal Model and Invariant Hypothesis Tests
The previous section provided a brief introduction to the problem of detecting an additive signal
in zero-mean colored Gaussian noise with known covariance matrix. Radars must detect targets
of interest when the interference-plus-noise covariance matrix is unknown. The parameters of
the interference-plus-noise covariance matrix are referred to as nuisance parameters, since the
unknown parameters must be estimated from available data in order to cancel interference.
Since the actual SINR is generally unknown, an estimate of the post-cancelation SINR is
maximized (as shown in Appendix 3.A), and a detection statistic is chosen that also takes
into account the signal-to-interference-plus-noise loss factor resulting from finite sample size
effects. While the procedure cannot guarantee that the SOI is detected, it may not be possible
to achieve acceptable detection probability without such an approach and also have a preset
probability of false alarm.
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A given surveillance area/volume where targets are to be detected is generally divided
into resolution cells, with each cell identified by its range, elevation, and azimuth angles in
reference to a coordinate system. Targets moving at different radial velocities produce different
Doppler shifts to the incident signals, and therefore the presence of a target at different Doppler
frequencies must be tested in a given test cell. A set of data vectors from resolution cells in
the “vicinity” of a test cell, referred to as secondary data vectors or training data vectors is
used for purposes of estimating the nuisance parameters. Adaptive detectors are derived by
assuming that the set of secondary data vectors are target-free, statistically independent and
identically distributed as the interference and noise in the test vector. Generally, the signal
model used assumes that the dimensionality of the signal space is one. A more general signal
space model is introduced next for the purpose of deriving adaptive subspace detectors in
unknown clutter-plus-interference.

3.3.1 Subspace Signal Model
Let z ∈ CN×1 represent the test vector comprising a possible subspace signal embedded in
interference and noise. The term interference is used here more generally and refers to clutter-
plus-interference. The interference-plus-noise in the test vector is denoted by x ∈ CN×1. N is the
number of samples (multidimensional) that are coherently processed. For spatial processing,
N is the number of receiver elements for example; for space–time processing, N is the product
of the number of receiver elements and the number of time samples received at each element.
Let H ∈ CN×M ; M < N , be a known matrix with linearly independent columns (i.e. rank of H
is M). The column space of H therefore defines an M-dimensional subspace in CN×1.

The signal vector p, to be detected in a given resolution cell is hypothesized to be contained
in the column space of a known matrix H ∈ CN×M . To allow for possible mismatches in the
assumed signal model, the actual signal is modeled to be contained in the column space
of a non-singular matrix D ∈ CN×N ; N ≥ M ≥ 1. The columns of matrix D are partitioned
as D = [H H⊥], where the column spaces of H and H⊥ are assumed to be orthogonal and
complimentary subspaces in CN×1. The ranks of matrices H and D are M and N respectively.
Thus, the hypothesized signal p and the actual signal v are expressed as linear sums of the
columns of H and D respectively:

p = H α,

v = D γ = [H H⊥] γ.
(3.12)

In the above α ∈ CM×1 and γ ∈ CN×1 are coefficient vectors. A fixed set of coefficients
defines a rank 1 signal and allowing the coefficients to vary defines the subspace signal model.

3.3.2 A Rationale for Subspace Signal Model
Among some of the several assumptions made in assuming a signal space of dimension 1 are:
a narrowband transmit signal, a point scatter target at known azimuth/elevation angles with
a constant and known radial velocity during the coherent integration interval, a known array
manifold, which implies that the array response to a point target at a given azimuth/elevation
and Doppler is known. Near-field scatter of signals from objects such as aircraft wings and
ship masts is generally neglected. As stated in the previous section, some scenarios inherently
require modeling of the signal subspace by a dimension greater than one due to multiple modes.
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In cases where the narrowband assumption is not strictly valid, the effective dimension of the
signal subspace must be assumed to be greater than 1 [46]. Some targets inherently require
subspace signal models [47]. Positioning and/or timing errors at individual sensor elements
can result in signal mismatch that results in detection loss. Synchronization errors at different
sensors can similarly result in signal mismatch for coherent processing – which in the spatial
domain refers to beamforming. These effects were described generally for antenna arrays in
Reference 48. Lastly, hypothesis testing of vectors from a grid of resolution cells can inherently
imply a mismatch between the actual signal and the steering vector assigned to a cell. While a
subspace detector cannot solve all problems, Section 3.5 presents results and conditions where a
subspace detector can mitigate the effects of some mismatch errors for a rank 1 signal. Below
we develop a simplified model to characterize the signal mismatch errors. For purposes of
convenience, the model below considers spatial or temporal processing only, however similar
results can be obtained for coherent processing over multiple domains. The hypothesized
steering vector p and the actual steering vector v are expressed as below in terms of the phase
error vector ζ:

v = p � ζ,

ζ = [
e j2πξ1/λ e j2πξ2/λ · · · e j2πξN /λ

]†
.

(3.13)

The vector p is the hypothesized signal vector, the vector ζ ∈ CN×1 denotes the mismatch
due to phase error at the elements. The error quantities {ξ1, ξ2, . . . ξN } have units of the carrier
wavelength λ and denote the projection of the difference between the position vector of a
receiving sensor and the equivalent phase-center of the receiving sensor on to the unit vector
in the direction of propagation of the signal. The notation � refers to the Hadamard product,
that is, element wise product in the equation above and referring to (3.12), the vector v is the
actual signal vector. Assuming the vector p to be deterministic, the covariance matrix of the
actual signal obtained by averaging over the ensemble of phase uncertainties is given by:

E
[
vv†] = pp† � E

[
ζζ†] = pp† � T. (3.14)

The form of the N × N taper matrix T above depends on the error model: The elements of
matrix T can be expressed in terms of the characteristic function [49] of the difference random
variable (ξn − ξm). As an example, for a zero-mean multivariate Gaussian model for the vector
{ξ1, ξ2, . . . ξN }, the (n, m)th element of T are:

T(n,m) = E
[
e j2π(ξn−ξm)/λ] =

{
1 if n = m,

e−(2πσn,m/λ)2/2 if n �= m.
(3.15)

In the above σ2
n,m = E

[
(ξn − ξm)2

] = 2σ2
0

[
1 − ρn,m

]
, where σ2

0 = E
[
ξ2

n

] = E
[
ξ2

m

]
and the

correlation coefficient ρn,m = σ2
0E[ξnξm]. The eigenvectors corresponding to the dominant

eigenvalues of signal covariance matrix define the signal subspace, and the taper matrix
increases the dimension of the signal subspace. This is generally the case where the errors
lead to a structured form of the taper matrix T. The condition 2π max(σn,m) << λ implies that
all elements of the matrix T are approximately 1, and the signal subspace is the same as that
of vector p. At the other extreme, 2π min(σn,m) >> λ leads to T = IN which implies that no
coherent processing is possible. It is of interest to note that the signal space model developed
here is similar to various forms of covariance matrix taper (CMT) applied to the estimates of
the interference-plus-noise covariance matrix [50–52]. For interference cancelation, the appli-
cation of a CMT produces adapted beam patterns with nulls that are wider that without the
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application of a CMT and therefore the former approach is more effective in canceling out
directional interference.

A second example is a model for phase uncertainty in spatial and/or temporal processing and
results from sampling of test vectors over a grid of azimuth angles and/or Doppler frequencies.
Sampling over a grid of azimuth angles is useful in some search application where the beam
pattern of the transmit array may illuminate a large extent of azimuth angles. Let p be the
spatial and/or temporal vector for a given azimuth and/or Doppler. The vector p is used for
testing signals from all points in the vicinity of each grid point. The phase difference at the
receiver between steering vectors for adjacent points on the grid is 2π�, and over the ensemble
of signal azimuth and/or Doppler, the phase error 2π� is modeled as being uniform in the
interval [−aπ, aπ]. The model parameter a is in the interval 0 ≤ a ≤ 1 and is chosen depending
on the fineness (a ≈ 0) or coarseness (a ≈ 1) of the azimuth and/or Doppler grid points. The
covariance matrix of the signal evaluated on the ensemble is given by (3.14), where

T(n,m) = 1

a

∫ +a/2

−a/2
e j2π(n−m)�d�

= sin(πa(n − m))

πa(n − m)
; n, m = 1, 2, . . . , N . (3.16)

The eigenvectors corresponding to the dominant eigenvalues of signal covariance matrix
define the signal subspace, and the taper matrix increases the dimension of the signal subspace
as we illustrate with an example in Section 3.5.

3.3.3 Hypothesis Test
Let H0 denote the null-hypothesis that z is interference and noise only and H1 the alternative
hypothesis that z is signal-plus-interference-plus-noise. The binary hypothesis test for detecting
the signal p in interference and noise is the following:

z =
{

x if H0,
x + H α; ||α||2 > 0 if H1.

(3.17)

The interference x is a complex, circularly symmetric zero-mean vector with covariance
matrix R ∈ H(N), where H(N) denotes the set of Hermitian positive definite matrices of size
N . The distribution is denoted by the notation x ∼ CN (0N×1, R). Note that the circularly
symmetric and zero-mean properties imply that the real and imaginary parts of each component
of x are such that E[xxT ] = 0N×N . The covariance matrix R is unknown to the receiver, and as
stated in the previous section, the elements of the Hermitian positive definite matrix R ∈ H(N)
are the nuisance parameters in the hypothesis test and are estimated from a given set of K(≥ N)
statistically independent and identically distributed secondary data vectors represented by the
matrix Y ∈ CN×K , with Y ∼ CN (0N×K , IK ⊗ R) for both hypotheses H0 and H1. The notation,
D = A ⊗ B is the Kronecker product of A and B. For A ∈ CN×M and B ∈ CK×L, the matrix
D ∈ CNK×ML comprises blocks of size K × L and the (n, m)th block is an,mB; n = 1, 2, . . . , N ;
m = 1, 2, . . . , M, where an,m is the element in the nth row and mth column of matrix A.

The hypothesis test in (3.17) is equivalent to the following:

z :

{||α||2 = 0 if H0,
||α||2 > 0 if H1.

(3.18)
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Given a test vector z and secondary data vectors Y , we seek to find linear transformations
of the data that leave the hypothesis testing problem in (3.18) unchanged. The hypothesis test
in (3.18) is equivalent to the test: ||p||22 = α†H†Hα = 0 vs. ||p||22 = α†H†Hα > 0. Note that the
M × M matrix H†H is Hermitian positive definite, and therefore the test ||p||22 = 0 vs. ||p||22 > 0
is equivalent to the test ||α||2 = 0 vs. ||α||2 > 0.

Let the Singular Value Decomposition (SVD) of the matrix H be:

H = UBW†. (3.19)

U and W are N × N and M × M unitary matrices, and B is a N × M matrix of singular values
b1 ≥ b2 ≥ · · · ≥ bM > 0 and is given by: B = [diag(b1, b2, . . . , bM ) 0M×(N−M)]†. Because of
the ordering of the singular values, the first M columns of the unitary matrix U are the orthonor-
mal basis for the hypothesized signal subspace. It can be verified that the following reversible
linear transformation of the data does not change the hypothesized signal subspace as well
as the original hypothesis test. Consider, Q = CU†, where C is a non-singular N × N matrix
given by:

C =
[

C11 C12

0(N−M)×M C22

]
, (3.20)

where the matrices C11 ∈ CM×M and C22 ∈ C(N−M)×(N−M) are both non-singular and the matrix
C12 ∈ CM×(N−M). The effect of pre-multiplying (i.e. left multiplication) the test vector and
secondary data by any matrix Q = CU† can be understood as follows:

The first pre-multiplication by U† results in a coordinate rotation such that the new set
of coordinate axes are the orthonormal column vectors of U. Thus, the first M axes are the
M orthonormal basis vectors of the signal subspace, and the last N − M axes are the basis
vectors of the assumed interference-plus-noise-only subspace. The transformed data and signal
vectors are:

z → U†z =
[

z1

z2

]
; Y → U†Y =

[
Y1

Y2

]
;

x → U†x =
[

x1

x2

]
; p → U†p =

[
p1

0(N−M)×1

]
.

(3.21)

In the above, z1 ∈ CM×1, z2 ∈ C(N−M)×1, and so on.
The transformed primary and secondary vectors after the coordinate rotation are as shown

above. The hypothesis tests developed are invariant to the following transformations:[
z1 Y1

z2 Y2

]
→

[
C11 C12

0(N−M)×M C22

] [
z1 Y1

z2 Y2

] [
e jα 01×K

0K×M V22

]
. (3.22)

In the above, α is an arbitrary phase, V22 is a K × K unitary matrix, and post-multiplication
of the secondary data matrices Y1 and Y2 by V22 just rotates the K samples in each row of
the secondary data matrices. Since the K secondary vectors are assumed to be independent
and identically distributed, the row rotations by a unitary matrix do not change the assumed
distribution of the secondary data. The matrices: C11 ∈ CM×M and C22 ∈ C(N−M)×(N−M) are
non-singular matrices and C12 ∈ CM×(N−M). The above left and right multiplications transform
the various components as follows: z1 → (C11z1 + C12z2)e jα; z2 → C22z2e jα; p1 → C11p1e jα

and the transformation z1 → (C11z1 + C12z2)e jα does not change the original hypothesis test.
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Therefore, for any non-singular matrix C11 ∈ CM×M , the test ||p||2 = 0 hypothesis H0 vs.
||p||2 > 0 hypothesis H1 is the same as p†

1C†
11C11p1 = 0 vs. p†

1C†
11C11p1 > 0. Additionally,

since C21 = 0(N−M)×M , we have z2 → C21z1 + C22z2e jα = C22z2e jα which does not contain
a signal for the hypothesized model. We consider hypothesis tests that are invariant to such
transformation.

3.3.4 Maximum Invariants for Subspace Signal Detection
in Interference and Noise

We show in Appendix 3.B that any two of the three statistics: ||y||22, y†PGy and y†P⊥
G y comprise

a maximal invariant statistic for the detection problem. For a hypothesized signal matrix H
and estimate S = YY†, which is K multiplied by the sample covariance matrix estimate, the
various quantities in the statistic are defined as:

y = S−1/2z,

G = S−1/2H,

PG = G(G†G)−1G†,

P⊥
G = IN − PG.

(3.23)

For purposes of evaluating the performance of detection algorithms under conditions of
signal model mismatch, it is more convenient to define the following two-dimensional statistic
ρ, r as maximal invariants:

ρ = 1

1 + y†P⊥
G y

,

r = 1

1 + ρ(y†PGy)
.

(3.24)

Note that all three quantities: ||y||22, y†PGy, y†P⊥
G y can be obtained in terms of ρ, r. In the

case when the hypothesized signal subspace is matched to the subspace of the actual signal,
the statistic y†PGy is an estimate of the SINR and the statistic ρ is an estimate of the loss in
SINR due to finite sample size effects.

The joint PDF of the statistic ρ, r is derived in Appendix 3.C including the case where
the hypothesized signal model is mismatched to the actual signal model. With the data from
a given test vector and secondary vectors reduced to the statistic ρ, r, the likelihood ratio test
in (3.1) can be simplified to the following, using (3.79), for given SINR δ and zero signal
mismatch error θ = 0:

L(H|ρ, r) = f (ρ, r|δ, θ = 0, H1)

f (ρ, r|H0)

H1
>
<
H0

η

= e−δρr
K−N+1∑

k=0

Ck [δρ(1 − r)]k
H1
>
<
H0

η. (3.25)
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The quantities Ck in the above expression are given by:

Ck =
(

K − N + 1

k

)
�(M)

�(M + k)
; k = 0, 1, . . . , K − N + 1. (3.26)

Without knowledge of the SINR δ, there is no function of ρ, r that is monotonically related
to the likelihood ratio statistic on the left-hand side of (3.25). As such, there is no uniformly
most powerful invariant test for (1 ≤ M < N). For the case of M = N , however, the maximal
invariant statistic is the single statistic: ||y||22 (this is equivalent to setting PG = IN and ρ = 1).
For M = N , the signal subspace is the space CN×1; the GLRT and AMF test are identical in
this case and given by the Hotelling’s T2 statistic [37], which is known to be a uniformly most
powerful invariant test.

3.4 Analytical Expressions for PD and PFA

Analytical expressions for the probability of false alarm in terms of the various parameters
are useful for the purposes of selecting the detection threshold for a given test. Analytical
expressions for PD and PFA also provide insight into factors that have a major influence on the
performance of a detector. Expressions for the probability of detection PD and the probability
of false alarm PFA are derived in this section using the results from Appendix 3.C. Also note
that for given signal matrices: H and D, interference-plus-noise covariance matrix R and for an
assumed γ ∈ CN×1, the mismatch angle θ required for computing the probability of detection
for the various cases is given in (3.66) of Appendix 3.C. The SINR, δ, can be evaluated from
(3.67) as: δ = γ†D̄†D̄γ = γ†D†R−1Dγ .

3.4.1 PD and PFA for Subspace GLRT
The hypothesis test for the signal subspace version of the GLRT is given from (3.47) and as
expressed in terms of the maximal invariant statistic (ρ, r) as defined in (3.24) is given by:

y†PGy(
1 + y†P⊥

G y
) H1

>
<
H0

η0 − 1. (3.27)

Using (3.24) the above is equivalent to the test:

r−1
H1
>
<
H0

η0. (3.28)

Given the joint PDFs of the maximal invariant statistic (ρ, r) conditioned on hypotheses H1

and H0 in (3.75) and (3.76) respectively, the probability of detection and probability of false
alarm are given by:

PD =
∫ 1

0
dρ

∫ η−1
0

0
f (r, ρ|H1)dr,

PFA =
∫ 1

0
dρ

∫ η−1
0

0
f (r, ρ|H0)dr.

(3.29)
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Using Proposition 3.3:

PD = P[r−1 > η0|H1] = 1 − (η0 − 1)M

ηK−N+M
0

K−N∑
k=0

(
K − N + M

k + M

)
(η0 − 1)kSk ,

Sk =
∫ 1

0

[
Gk+1

(
ρδ cos2 θ

η0

)
fβ(ρ; K − (N − M) + 1, N − M|δ sin2 θ)

]
dρ.

(3.30)

The probability of false alarm is obtained by setting δ = 0 in the above and is:

PFA = P[r−1 > η0|H0] = 1 − (η0 − 1)M

ηK−N+M
0

K−N∑
k=0

(
K − N + M

k + M

)
(η0 − 1)k

= 1

ηK−N+M
0

M−1∑
n=0

(
K − N + M

n

)
(η0 − 1)n. (3.31)

3.4.2 PD and PFA for Subspace AMF Test

The subspace AMF test given in (3.49) is: y†PGy
H1
>
<
H0

η and in terms of (ρ, r), the test is written as:

r−1 − 1
H1
>
<
H0

ρη. (3.32)

The probability of detection and probability of false alarm are given by:

PD =
∫ 1

0
dρ

∫ (1+ρη)−1

0
f (r, ρ|H1)dr,

PFA =
∫ 1

0
dρ

∫ (1+ρη)−1

0
f (r, ρ|H0)dr.

(3.33)

From (3.75), the statistic r for given ρ is non-central beta: βK−N+1,M (ρδ cos2 θ). The PD
and PFA for the test in (3.32) is obtained in a manner similar to that in (3.28) and is:

PD = P[r < (1 + ρη)−1|H1] = 1 − 1

L + M

L−1∑
k=0

Tk ,

Tk =
∫ 1

0
fβ

(
1

1 + ρη
; L − k, M + k + 1

)
Gk+1

(
ρδ cos2 θ

1 + ρη

)
fβ(ρ; L + M, N − M|δ sin2 θ)dρ.

(3.34)
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For notational convenience, L = K − N + 1 in the above. The probability of false alarm is
obtained by setting δ = 0 and is:

PFA = P[r < (1 + ρη)−1|H0] = 1 − 1

L + M

L−1∑
k=0

T̃k ,

T̃k =
∫ 1

0
fβ

(
1

1 + ρη
; L − k, M + k + 1

)
fβ(ρ; L + M, N − M)dρ.

(3.35)

3.4.3 PD and PFA for Subspace ACE Test
The ACE test in (3.51) is equivalent to the following tests:

y†PGy

y†P⊥
G y + y†PGy

H1
>
<
H0

η,

r−1
H1
>
<
H0

(1 − ρ)η0 + 1.

(3.36)

The ACE threshold η0 in the second expression above is given in terms of the quantity η

in the first expression above by: η0 = η/(1 − η).
The probability of detection and probability of false alarm are given by:

PD =
∫ 1

0
dρ

∫ (1+(1−ρ)η0)−1

0
f (r, ρ|H1)dr,

PFA =
∫ 1

0
dρ

∫ (1+(1−ρ)η0)−1

0
f (r, ρ|H0)dr.

(3.37)

Since the statistic on the left-hand side of the first expression in (3.36) is in the interval
(0, 1), the threshold η lies in the interval 0 < η < 1. Expressions for PD and PFA for the test in
(3.36) are:

PD = P[r < (η0(1 − ρ) + 1)−1|H1] = 1 − 1

L + M

L−1∑
k=0

Vk ,

Vk =
∫ 1

0
fβ

(
1

1 + (1 − ρ)η0
; L − k, M + k + 1

)
Gk+1

(
ρδ cos2 θ

1 + (1 − ρ)η0

)
(3.38)

× fβ(ρ; L + M, N − M|δ sin2 θ)dρ.

The PFA is given by setting δ = 0 in the above equation and is:

PFA = P[r < (η0(1 − ρ) + 1)−1|H0] = 1 − 1

L + M

L−1∑
k=0

Ṽk ,

Ṽk =
∫ 1

0
fβ

(
1

1 + (1 − ρ)η0
; L − k, M + k + 1

)
fβ(ρ; L + M, N − M)dρ.

(3.39)
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3.5 Performance Results of Adaptive Subspace Detectors
Results illustrating the detection performance of the three adaptive subspace detectors are
presented in this section. We consider the case where the coefficients α and γ in the signal
model (3.12) are deterministic and unknown. As shown in Appendix 3.A, given a test vector
z ∈ CN×1 and secondary data vectors Y ∈ CN×K ; K ≥ N , the coefficient vector α ∈ CM×1, is
estimated as: α̂ = (H†S−1H)−1H†S−1z. No prior model is assumed for α in obtaining the
estimate α̂. Given the signal model, the estimate of the signal to be detected (to within a non-
zero multiplicative constant) is p̂ = [Hα̂] ∈ CN×1, and the three subspace detectors (i.e. GLRT,
AMF, and ACE) each implements the respective test for detecting the rank 1 deterministic signal
p̂ as shown in Appendix 3.A. For vectors p and v that are inherently random, sample space
realizations of these vectors for different Coherent Processing Intervals (CPIs) correspond
to randomly scaled sum of the column vectors of H and D respectively. Therefore, it is not
possible to use a rank 1 detector matched to any fixed signal to detect a subspace signal for the
sample space implied by the model.

In summary, having obtained the estimate p̂ ∈ CN×1 the subspace detectors are exactly
the corresponding detectors for a rank 1 signal p̂, in unknown interference-plus-noise with the
exception that the thresholds are chosen from the corresponding expressions for the probability
of false alarm for subspace detectors of dimension M. There are two main issues that need to
be considered if the hypothesized signal subspace dimension is increased by 1 (1 ≤ M < N),
with the first M dimensions being the same as before. First, if the hypothesized signal p
and actual signal v are mismatched, increasing the subspace dimension cannot increase the
generalized mismatch angle. If the (M + 1)th subspace dimension represents the mismatch
signal component exactly, the newly hypothesized signal model is matched with the actual
signal model, and hence there is no loss in performance due to mismatch. The second issue to
consider is the loss in performance due to the increased residual interference-plus-noise level
as the hypothesized signal subspace dimension is increased. Figures presented in this section
illustrate the result of the two competing effects in determining the detector performance.

Figures 3.1–3.3 illustrate the increase in residual interference-plus-noise power with
increasing signal subspace dimension M. The quantity log10 (PFA) is shown as a function
of the detection threshold, with the subspace dimension M shown as a parameter. Figures
3.1–3.3 are for the GLRT detector in (3.47), AMF detector in (3.49), and ACE detector in
(3.51) respectively. In order to hold the probability of false alarm constant, the figures show
that the detection threshold needs to be increased as the subspace dimension, M, is increased.
Note that for purposes of implementing the computations, the probability of false alarm for a
given threshold was evaluated by performing a numerical double integral given in (3.33) for
the AMF detector and in (3.37) for the ACE detector. Since the double integral of the joint
density function over 0 < r < 1 and 0 < ρ < 1 is 1, the evaluation of probability of false alarms
(especially for PFA = 10−4 or smaller) requires control over numerical errors which can be
specified as a parameter in most numerical integration algorithms. The expressions in (3.34)
and (3.38) were used to evaluate the probability of detection since the numerical errors due
to addition and subtraction of large quantities do not have to be as accurate as that required
for the evaluation of the probability of false alarm. For the subspace GLRT the expressions in
(3.30) and (3.31) were used for computing the probability of detection and probability of false
alarm respectively.

When applied to detecting a rank 1 signal in interference and noise, the decrease in detection
performance of subspace detectors as the hypothesized signal subspace dimension is increased
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Figure 3.1 log10 (PFA) vs. the subspace GLRT threshold η0 in (3.27) with signal subspace dimen-
sion M as a parameter. The figure shows that in order to fix the probability of false
alarm at a required level, higher thresholds are required as the signal subspace dimen-
sion M is increased.
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Figure 3.2 log10 (PFA) vs. the subspace AMF threshold η in (3.32) with signal subspace dimension
M as a parameter. The figure shows that in order to fix the probability of false alarm
at a required level, higher thresholds are required as the signal subspace dimension M
is increased.
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Figure 3.3 log10 (PFA) vs. log10 (η0) with signal subspace dimension M as a parameter. The ACE
threshold η0 is given in (3.36). The figure shows that in order to fix the probability of
false alarm at a required level, higher thresholds are required as the signal subspace
dimension M is increased.

from M = 1 to M = 5 as illustrated in Figures 3.4–3.6 for the GLRT, AMF, and the ACE
detectors. For M = 1, the hypothesized signal and the actual signal to be detected are matched
and therefore the mismatch angle, θ = 0. The first column of the signal matrix H is matched to
the actual signal, the mismatch angle is 0◦ for all other hypothesized signal subspace dimensions
(i.e. M) in these examples. These figures show plots of the probability of detection as a function
of SINR (in dB) for the subspace GLRT, AMF, and ACE detectors respectively. The detection
thresholds in each case were set such that the probability of false alarm is 10−4. The number
of training vectors K = 18 and each training vector is of size N = 9. The case K = 2N was
chosen for purposes of illustration. For each of the three detectors and for a given subspace
dimension M, the probability of detection increases monotonically as a function of SINR from
PFA to 1. For mismatch angle θ = 0◦, these plots show the probability of detection decreasing
with increasing subspace dimension M in all cases. Figure 3.7 is a plot of the SINR loss for the
three subspace detectors with increasing subspace dimension M for probability of detection
of 0.9. Results shown in this figure assume that the generalized mismatch angle θ = 0◦ for all
three detectors and for all subspace dimensions M. The threshold is chosen in all cases such
that the probability of false alarm is 10−4. The SINR loss at a specific probability of detection
of a given subspace detector is defined as the additional SINR (in dB) required in comparison
to the corresponding detector for M = 1 such that the two detectors have the same probability
of detection (0.9 in this case), with all other quantities remaining the same (i.e. quantities such
as K , N , PFA). By definition therefore, the SINR loss of all three detectors is 0 dB for M = 1.
The plot of the SINR loss for the subspace GLRT and AMF detector approximately coincides.
The SINR loss increases more drastically with increasing M for subspace ACE detector as
shown in Figure 3.7.
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Figure 3.4 PD vs. SINR (in dB) of the subspace GLRT for different signal subspace dimensions
M. The thresholds are chosen such that PFA = 10−4 in all cases.
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Figure 3.5 PD vs. SINR (in dB) of the subspace AMF detector for different signal subspace
dimensions M. The thresholds are chosen such that PFA = 10−4 in all cases.
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Figure 3.6 PD vs. SINR (in dB) of the subspace ACE detector for different signal subspace
dimensions M. The thresholds are chosen such that PFA = 10−4 in all cases.
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Figure 3.7 Additional SINR required relative to the corresponding detector for M = 1 such that
Pd = 0.9 shown as a function of signal subspace dimension M for subspace GLRT,
AMF, and ACE detectors. The mismatch angle θ = 0◦ in all cases.
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Figure 3.8 Probability of detection for the subspace GLRT as a function of cos2 (θ) for differ-
ent signal subspace dimensions M. The probability of false alarm is 10−4 and the
SINR = 20 dB in all cases. The figure shows the mismatch signal rejection character-
istics of the subspace GLRT.

For a given SINR, Figures 3.8–3.10 are plots of the probability of detection PD as a function
of cos2 (θ), the squared-cosine of the generalized mismatch angle for the subspace GLRT, AMF,
and ACE detectors respectively. These figures show PD vs. cos2 (θ) for different hypothesized
signal subspace dimensions M. A key assumption to keep in mind is that the quantity cos2 (θ) is
chosen as an independent variable along the abscissa for the various curves in each figure with
SINR held fixed. For any specific deterministic signal, the mismatch angle |θ| would either be
constant or decrease as the subspace dimension M is increased. The results are shown for a
SINR of 20 dB. Other quantities assumed are: K = 18, N = 9, and PFA = 10−4. With increasing
subspace dimension M, the mismatched signal rejection characteristics of the three subspace
detectors can be understood in terms of the detection statistic of the three detectors. As shown
in Appendix 3.A, the detection statistics for the subspace GLRT, AMF, and ACE detectors are
(an equivalent ACE statistic is shown): (y†PGy)/(1 + y†P⊥

G y), (y†PGy), and (y†PGy)/(y†P⊥
G y)

respectively. PG and P⊥
G are the orthogonal projection matrix for the M-dimensional column

space of: S−1/2H (denoted by < S−1/2H >) and its orthogonal complement subspace in
CN×1 (dimension N − M) respectively. The vector y is given in terms of the test vector z by:
y = S−1/2z. Mismatched signals are rejected more effectively by the GLRT and ACE detectors
in comparison to the AMF detector because of the term y†P⊥

G y in the GLRT and ACE statistics.
The presence of a strong mismatched signal component contributes significantly to this term,
which reduces the detection static of both the GLRT and the ACE detectors. The above term
has no effect on the AMF test statistic however. For a high SINR and a mismatch angle chosen
independently to be θ = 90◦ the AMF detection statistic increases with increasing subspace
dimension M as shown in Figure 3.9.
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Figure 3.9 Probability of detection for the subspace AMF detector as a function of cos2 (θ)
for different signal subspace dimensions M. The probability of false alarm is 10−4

and the SINR = 20 dB in all cases. The figure shows the mismatch signal rejection
characteristics of the subspace AMF detector.
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Figure 3.10 Probability of detection for the subspace ACE detector as a function of cos2 (θ)
for different signal subspace dimensions M. The probability of false alarm is 10−4

and the SINR = 20 dB in all cases. The figure shows the mismatch signal rejection
characteristics of the subspace ACE detector.
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Figure 3.11 PD for the subspace GLRT M = 1 (solid lines) and M = 2 (dotted lines) as a function
of cos2(θ) for different SINR (in dB). The probability of false alarm is 10−4 in all
cases.
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Figure 3.12 PD for the subspace AMF detector M = 1 (solid lines) and M = 2 (dotted lines) as
a function of cos2(θ) for different SINR (in dB). The probability of false alarm is
10−4 in all cases.

For a given SINR and mismatch angle θ (specified as an independent quantity), the prob-
ability of detection for the GLRT and ACE detectors decreases as the subspace dimension
M is increased as shown in Figures 3.8 and 3.10 respectively. This implies that the smallest
subspace dimension is generally preferred for these detectors. By comparison, increasing the
subspace dimension M has a different effect on the AMF detector as illustrated in Figure 3.9.
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Figure 3.13 PD for the subspace ACE detector M = 1 (solid lines) and M = 2 (dotted lines) as
a function of cos2(θ) for different SINR (in dB). The probability of false alarm is
10−4 in all cases.

The effect of mismatch between the hypothesized signal and the actual signal is illustrated in
Figures 3.11–3.13 for the GLRT, AMF, and ACE detectors respectively. The three figures show
the probability of detection as a function of the squared generalized cosine of the mismatch
angle cos2(θ), as defined in (3.66). The plots are parameterized in terms of the SINR (in dB) and
are shown for the subspace detectors for the hypothesized signal subspace dimensions M = 1
and M = 2. For all three detectors, K = 18, N = 9, and PFA = 10−4. For illustrative purposes,
consider the point marked by the symbol A on these plots. For all three detectors, the point A
appears on the cos2(θ) vs. PD plot, parameterized by SINR = 16 dB and M = 1. The coordinates
(cos2(θ), PD) of the point A are (0.944, 0.724), (0.85, 0.624), and (0.94, 0.41) for the GLRT,
AMF, and ACE detectors respectively. The squared generalized cosine of the mismatch angle
for point A is chosen such that, the probability of detection for SINR = 16 dB and M = 1 is
exactly equal to the probability of detection for a corresponding detector for subspace dimen-
sion M = 2, SINR = 16 dB and mismatch angle θ = 0◦, with all other quantities held constant.

Thus, the corresponding coordinates of a subspace detector for M = 2 which incorporates
the mismatched signal component as the second column of the signal matrix H are: (cos2(θ),
PD) = (1, 0.724), (1, 0.624), and (1, 0.41) for the GLRT, AMF, and ACE detectors respectively.
Note that the probability of detection for the M = 1 detector with signal mismatch is same as
the probability of detection for the corresponding detector with M = 2 and with no mismatch.
These coordinates are also the coordinates of the single point of intersection in (cos2(θ), PD)
space of the horizontal dotted line with the vertical line cos2(θ) = 1 and the (cos2(θ) vs. PD)
curve for SINR = 16 dB for M = 2. It is evident from these figures that a subspace detector
for M = 1 (mismatched case) has a higher probability of detection compared to a subspace
detector with M = 2 (matched case) for points on the SINR = 16 dB curve that are to the right
of A. Similarly, a subspace detector for M = 1 (mismatched case) has a lower probability
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Figure 3.14 PD for the GLRT (M = 1) as a function of cos2(θ) for different SINR (in dB).
The signal model for M = 2 is perfectly matched with the hypothesized signal and so the PD

corresponding to the point of intersection of the solid curve (for a given SINR), and the dotted line
(e.g., point A for SINR = 16 dB) is the detection probability for the subspace detector corresponding
to M = 2. Thus, for all mismatch angles to the left of the dotted line, increasing the subspace
dimension to M = 2 increases the probability of detection. For mismatch angles to the right of the
dotted line, increasing the signal subspace dimension decreases the probability of detection. The
probability of false alarm is 10−4 in all cases.

of detection compared to a subspace detector with M = 2 (matched case) for points on the
SINR = 16 dB curve that are to the left of A. The point A is where the effects due to the two
opposing factors (i.e. the increase of residual interference-plus-noise power as signal subspace
dimension M increases vs. reduced signal mismatch errors as signal subspace dimension M,
increases balance each other). Note that the point A was selected on the SINR = 16 dB curve
for purposes of illustration and the above arguments hold for any other SINR.

As the SINR is varied, the locus of points on the cos2(θ) vs. PD plots where the PD for
the M = 2, subspace detector with θ = 0 is exactly equal to the PD for the corresponding
mismatched subspace detector for M = 1 and the same SINR is shown by the dark dotted
line in Figures 3.14–3.16 for the subspace GLRT, AMF, and ACE detectors respectively.
All other parameters such as K , N , PFA are held constant. The cos2(θ) vs. PD shown in
these figures are for M = 1 and do not show the results for M = 2, as in Figures 3.11–3.13
for purposes of clarity. The dark dotted line partitions the PD vs. cos2(θ) space into two
distinct regions. For a given SINR, a subspace detector for M = 1 with signal mismatch
has a higher probability of detection in comparison to that of the corresponding sub-
space detector for M = 2 and zero mismatch angle for all points to the right of the line
of demarcation. Similarly, for a given SINR, a subspace detector for M = 1 with signal
mismatch has a lower probability of detection in comparison to that of the corresponding
subspace detector for M = 2 and zero mismatch angle for all points to the left of the line
of demarcation. The difference in detection probabilities can be significant in the latter case
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Figure 3.15 Results corresponding to Figure 3.14 for the AMF detector.
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Figure 3.16 Results corresponding to Figure 3.14 for the ACE detector.

as shown by points marked by the symbols A and B on these plots for example which cor-
respond to SINR = 16 dB and SINR = 13 dB respectively. The ordinates of points A and B
are the probability of detection for the subspace detector with M = 2 (matched case), and
the ordinates of points to the left of A and B for the corresponding SINR are the detection
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Figure 3.17 PD vs. SINR (in dB) for the three detectors. The columns of the matrix D are the
orthonormal eigenvectors of the signal covariance matrix with the CMT as specified in (3.14) and
(3.16) for a = 0.05. The results are for the three subspace detectors with the signal space dimension
set to M = 1. The matrix H is the first column of D. The actual signal is mismatched to the
hypothesized signal in this example and cos2(θ) = 0.5. The probability of false alarm is 10−4 in all
cases. Solid lines are results from analytical expressions, and symbols are results from computer
simulations.

probabilities of a subspace detector for M = 1. Thus a subspace detector with a higher signal
dimension (M = 2 and matched, in this example) can have a significantly higher probabil-
ity of detection compared to the corresponding subspace detector for M = 1, depending on
the mismatch angle. Note that signal model assumes that the parameter vector α is deter-
ministic and therefore given a model for mismatch errors, such as those in (3.14) and (3.16)
for example, it is possible to increase the subspace dimension to increase detection perfor-
mance. This is illustrated in Figures 3.17 and 3.18, which are plots of the probability of
detection as a function of SINR (in dB), for the three subspace detectors with M = 1 and
M = 2 respectively.

Details of the example are as follows: consider a search application where a signal return
from a point situated within a given sector defined with respect to the boresite direction of
a uniform linear array of N elements and at a hypothesized range is to be detected in inter-
ference and noise. As an example, let the assumed signal return be from the boresite direc-
tion and we generate the tapered covariance matrix as specified in (3.14) and (3.16). In this
example, the parameter a = 0.05. The orthonormal eigenvectors corresponding to the domi-
nant eigenvalues of the signal covariance matrix are the basis vectors of the signal subspace
and model the signal vectors from all angles within the search sector more accurately than
any single steering vector. The columns of the matrix D are the orthonormal eigenvectors
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Figure 3.18 PD vs. SINR (in dB) for the three detectors. The columns of the matrix D are the
orthonormal eigenvectors of the signal covariance matrix with the CMT as specified in (3.14) and
(3.16) for a = 0.05. The results are for the three subspace detectors with the signal space dimension
set to M = 2. The matrix H is formed by the first two columns of the matrix D. The actual signal is
the same as that used in Figure 3.17 and increasing the signal space dimension to M = 2 reduces the
mismatch angle such that cos2(θ) = 0.94. The probability of false alarm is 10−4 in all cases. Solid
lines are results from analytical expressions, and symbols are results from computer simulations.

of the signal covariance matrix with the CMT as specified in (3.14) and (3.16) for a = 0.05.
The eigenvectors are arranged from left to right in descending order of magnitude of the
eigenvalues. Thus, for the hypothesized signal subspace dimension M = 1, the hypothesized
signal is the eigenvector with the largest eigenvalue of the matrix in (3.14) with the taper
in (3.16). As an example, consider the actual signal v = [1 e j2πa e j4πa · · · e j2(N−1)πa]† for
a = 0.05, which corresponds to a steering vector pointed to the azimuth angle sin (φ) = 0.1.
Since the probability of false alarm of the detectors can be set independent of the interference-
plus-noise covariance matrix (CFAR property), this matrix is set to the identity matrix in
this example. For M = 1, the mismatch angle is cos2(θ) = 0.5, and Figure 3.17 is a plot
of the probability of detection vs. SINR (in dB) of the three subspace detectors. Increas-
ing the hypothesized signal subspace dimension to M = 2 in this case reduces the mismatch
angle: cos2(θ) = 0.94, and Figure 3.18 shows a plot of the probability of detection vs. SINR
(in dB) of the three subspace detectors. Note that the SINR is not changed by changing the
signal subspace dimension M and it is only the signal mismatch angle θ that is changed.
Thus, increasing the subspace dimension by 1 results in significantly improving the detec-
tion performance in Figure 3.18 compared to the detection performance of the corresponding
detector in Figure 3.17.
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3.6 Summary and Conclusions
The chapter begins with a brief review of binary hypothesis testing for detecting a known
signal in zero-mean Gaussian noise with known covariance matrix. The chapter introduces
the reader to the problem of detecting a signal assumed to belong to a subspace of dimen-
sion M; 1 ≤ M ≤ N in unknown interference from an invariance perspective. Excluding the
case M = 1, subspace signals provide an approach to model uncertainties due to various errors
described in the text, which generally do not enable a signal to be known to within a non-zero
multiplicative constant. We have shown that the invariance framework in hypothesis testing
provides a systematic approach for dealing with the large number of nuisance parameters typ-
ically inherent in these problems and that the resulting subspace detectors have the CFAR
feature. With the CFAR feature, the receiver can select the detection threshold for any chosen
invariant hypothesis test and a hypothesized signal subspace dimension M, without knowl-
edge of the interference-plus-noise covariance matrix so that the probability of false alarm is
fixed at a required value. The test statistics of all invariant tests are constructed from maximal
invariant statistic and for signal subspace dimension 1 ≤ M < N , maximal invariant statis-
tic was shown to be a two-dimensional statistic. For M = N , the maximal invariant statistic
reduces to a single scalar statistic. The joint PDFs of maximal invariant statistic conditioned
on (i) the null hypothesis H0 and (ii) the alternative hypothesis H1 were derived. The analy-
sis of the joint PDF included model mismatch errors where the assumed subspace model for
the input signal: p = H α is mismatched with the actual input signal which is of the form:
v = [H H⊥] γ as described in (3.12). The N × M matrix H is known and comprises lin-
early independent columns. The column space of H denoted by < H > is the subspace of the
hypothesized signal p. Similarly, the columns of the matrix N × (N − M) matrix H⊥ denotes a
subspace orthogonal to the hypothesized signal subspace. The subspaces < H > and < H⊥ >

are orthogonal and complementary subspaces of CN×1. The vectors α ∈ CM×1 and γ ∈ CN×1

are deterministic but unknown and in our model, these vectors introduce the uncertainty in not
knowing the exact input signal.

Although an infinite number of invariant tests can be constructed from the two-dimensional
maximal invariant statistic, we restricted our analysis of performance to subspace versions of
the (i) GLRT, (ii) AMF, and (iii) ACE. Analytical expressions for the probability of false alarm
and probability of detection of the three subspace detectors were derived including the case
of signal model mismatch errors. We have shown that each of the three subspace detectors is
identical in form to the corresponding detector for M = 1, where the steering vector p is replaced
by the signal vector estimate: p̂ = H(H†S−1H)−1H†S−1z. The threshold levels for each of the
subspace detectors needs to be increased in comparison to the corresponding detector for
M = 1 in order to hold the probability of false alarm constant. The estimated signal vector
p̂ is random because both the estimated interference-plus-noise covariance matrix S and the
interference-plus-noise in the test vector z are random quantities independent of the signal. It
is possible to consider random effects inherent in the signal model itself by considering α and
γ as random vectors. The analysis of random effects in the signal model itself is not carried
out and is beyond the scope of the material in this chapter.

For a deterministic signal, we have illustrated that it may be possible to mitigate the loss
in detection performance due to signal mismatch errors for M = 1 by increasing the subspace
dimension M. The improvement in detection performance is possible only if the generalized
mismatch angle (0 ≤ θ ≤ π/2) for M = 1 is above a certain mismatch angle threshold. For a
given SINR, the threshold angle where the probability of detection of a detector with M = 1
equals the detection probability of the corresponding detector with M = 2 but with no signal
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mismatch errors defines the mismatch angle threshold. All other quantities for the M = 1 and
M = 2 except for the mismatch angles are the same. The mismatch angle threshold is a function
of SINR and the threshold for the generalized cosine square of mismatch angle generally moves
towards cos2(θ) = 1 as the SINR increases. Thus, for generalized cosine square of mismatch
angle errors that are larger that the threshold, it is not possible to reduce the loss in detection
performance due to signal model mismatch errors by increasing the signal subspace dimension
alone. A change in the assumed model H is require in these cases. For generalized cosine square
of mismatch errors that are smaller than the threshold we have illustrated with an example to
mitigate the loss in detection performance by increasing the signal subspace dimension. A
CMT is applied to the outer product of a rank 1 signal and eigenvectors of the resulting matrix
defines the columns of matrix D.

Appendix 3.A
This appendix contains derivations of the subspace signal detectors based on: (i) the GLRT,
(ii) the AMF test, and (iii) the ACE test.

We begin by writing the multivariate complex Gaussian PDF:

f (z, Y|R, H0) = e
−Tr

[
R−1[

zz†+YY†
]]

π(K+1)N [det(R)](K+1)
, (3.40)

where R is the unknown covariance matrix of interference-plus-noise, Tr[ ] is the trace
operator, and † denotes the Hermitian transpose of a matrix. The interference model used
here assumes that the primary vector (i.e. the test vector) and secondary vectors (i.e. training
vectors) are statistically independent and have the same covariance matrix. The primary and
secondary data under the alternative hypothesis H1 is given by:

f (z, Y|R, p, H1) = e
−Tr

[
R−1[

(z−p)(z−p)†+YY†
]]

π(K+1)N [det(R)](K+1)
. (3.41)

The model for the signal vector p is described in (3.12) of Section 3.3.

3.A.1 Subspace Version of the GLRT
Under hypothesis H0, the estimate R̂0 = (zz†+YY†)/(K +1) maximizes the likelihood function
in (3.40). Defining the matrix S = YY†, we have

max
R

: f (z, Y|R, H0) = f (z, Y|R = R̂0, H0)

= c[det(S + zz†)]−(K+1). (3.42)

In the second expression above, c is a constant independent of the data and is therefore
unimportant. Similarly, the estimate R̂1 = ([z − Hα][z − Hα]† + YY†)/(K + 1) maximizes the
likelihood function in (3.41) for a given p = Hα. Thus,

max
R

: f (z, Y|R, α, H1) = f (z, Y|R = R̂1, α, H1)

= c[det(S + [z − Hα][z − Hα]†)]−(K+1). (3.43)
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For K ≥ N , the matrix S is positive definite with probability 1, and therefore the determinant
above can be written as:

det(S + [z − Hα][z − Hα]†) = det(S) (1 + [z − Hα]†S−1[z − Hα]). (3.44)

The expression (3.43) is maximized over α by setting H†S−1[z − Hα] = 0. Substituting
the estimate: α̂ = (H†S−1H)−1H†S−1z in (3.43) and rearranging terms, we have:

max
R,α

: f (z, Y|R, α, H1) = f (z, Y|R = R̂1, α = α̂, H1)

= c(1 + z†S−1z − z†S−1H(H†S−1H)−1H†S−1z)−(K+1). (3.45)

The detection statistic is formed by taking the ratio of the maximized likelihood quantities in
(3.45) and (3.42). Taking the (K +1) th root of the ratio, the statistic can be rearranged to obtain:

z†S−1H(H†S−1H)−1H†S−1z(
1 + z†S−1z

) H1
>
<
H0

η. (3.46)

Define y = S−1/2z, G = S−1/2H and the orthogonal projection matrices PG = G(G†G)−1G†

and P⊥
G = IN −PG. Note that pre-multiplication of z by S−1/2 is for the purpose of “whitening”

the interference in the vector. The pre-multiplication of H by the same matrix transforms the
column space of H, and therefore, PG is the orthogonal projection matrix to the transformed
signal subspace. The subspace GLRT in (3.27) is equivalent to:

y†PGy(
1 + y†P⊥

G y
) H1

>
<
H0

η

1 − η
. (3.47)

The above is the subspace signal version of the GLRT. It is of interest to note that a version
of the GLRT applicable to multiple CPIs appears in References 53, 54.

3.A.2 Subspace Version of the AMF Test
The subspace version of the AMF test is obtained by deleting the term

(
1 + z†S−1z

)
in (3.46):

z†S−1H(H†S−1H)−1H†S−1z
H1
>
<
H0

η. (3.48)

The above test is also obtained if one were to start from a likelihood ratio formulation and
substitute R̂ = S for both hypotheses and then maximize the likelihood ratio over the unknown
vector α.

Using the earlier definitions, the AMF test is also given by:

y†PGy
H1
>
<
H0

η. (3.49)

3.A.3 Subspace Version of the ACE Test
The Matched Subspace Detector (MSD) and the adaptive version of the MSD that is the sub-
space version of the ACE test are discussed in [55] and [56] respectively. As in the case of
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M = 1, the subspace version of ACE test can be derived if one assumes that the interference
covariance matrix of the primary data is the interference covariance matrix of the secondary
data multiplied by an unknown positive constant. Let the covariance matrix of the primary data
interference be qR, where q > 0 and is unknown. The covariance matrix of the interference
in the secondary data set is R, which is also unknown. To derive the ACE test, we substitute
R̂ = YY† = S in the likelihood function for H0 and obtain the Maximum Likelihood Estimate
(MLE) of the parameter q – the scale factor K−1 in the sample covariance matrix estimate
need not be included since it can be accounted for in q. The MLE is q̂0 = z†S−1z and next,
substitute R̂ = YY† = S in the likelihood function for H1 and obtain the MLEs of both α and q.
The estimates are: α̂ = (H†S−1H)−1H†S−1z and q̂1 = z†S−1z−z†S−1H(H†S−1H)−1H†S−1z.
Substituting the estimates R̂, α̂, q̂0, and q̂1 into the likelihood ratio, the subspace version of the
ACE test is given by:

z†S−1H(H†S−1H)−1H†S−1z(
z†S−1z

) H1
>
<
H0

η. (3.50)

In terms of the orthogonal projection matrix, the above test is:

y†PGy
y†y

H1
>
<
H0

η. (3.51)

As an example for M = 1, set p = H ∈ CN×1 and the subspace signal versions of the GLRT,
AMF, and ACE tests in (3.46), (3.48), and (3.50) result in tests in the following familiar form:

|p†S−1z|2(
p†S−1p

) (
1 + z†S−1z

) H1
>
<
H0

η,

|p†S−1z|2
p†S−1p

H1
>
<
H0

η,

|p†S−1z|2(
p†S−1p

) (
z†S−1z

) H1
>
<
H0

η.

(3.52)

Note that for a given probability of false alarm, the threshold η in the three tests above is
different. It is also of interest to note that for the subspace detectors, the unknown parameter
vector α ∈ CM×1 is estimated as: α̂ = (H†S−1H)−1H†S−1z, the corresponding estimate of the
signal vector p ∈ CN×1 is p̂ = Hα̂ = H(H†S−1H)−1H†S−1z, and the three subspace detectors
correspond respectively to the following (familiar) rank 1 signal detectors for the signal p̂:

|p̂†S−1z|2
(p̂†S−1p̂)

(
1 + z†S−1z

) H1
>
<
H0

η,

|p̂†S−1z|2
p̂†S−1p̂

H1
>
<
H0

η,

|p̂†S−1z|2
(p̂†S−1p̂)

(
z†S−1z

) H1
>
<
H0

η.

(3.53)
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Although the forms of the detectors above are identical to the respective rank 1 detectors,
note that the signal p̂ ∈ CN×1 is a random vector and the threshold η above is set using the
respective equations for the subspace detectors. The signal vector p for M = 1 in (3.52) on
the other hand is a deterministic vector. Both vectors p and v are deterministic vectors, and
the randomness of the estimated signal vector p̂ = H(H†S−1H)−1H†S−1z is only due to the
estimated interference-plus-noise covariance matrix S and the interference-plus-noise in the
test vector z which are both random quantities independent of the signal.

Appendix 3.B
Given that the matrices PG and P⊥

G are orthogonal projection matrices of two orthogonal
complementary subspaces in CN×1, we have PG + P⊥

G = IN . Therefore for 1 ≤ M < N ,
||y||2 = y†PGy + y†P⊥

G y and the detection statistic in (3.47), (3.49), and (3.51) can be writ-
ten in terms of any two of the three quantities: ||y||22, y†PGy, y†P⊥

G y. Note that for M = N ,
PG = IN , and therefore the two-dimensional statistic reduces to a scalar statistic ||y||22 as shown
in Reference 57. The column space of a matrix H is denoted by the notation <H>.

Let U be a unitary matrix, whose first M columns are an orthonormal basis for <H> and
C any non-singular matrix as defined in (3.20). Note that the set of matrices C as described in
(3.20) is a group G. This property is useful for proving the results in this appendix. For matrices
A ∈ G, B ∈ G, and D ∈ G, we have AB ∈ G, (AB)D = A(BD). The identity matrix IN ∈ G. For
every A ∈ G, AIN = IN A = A, A−1 ∈ G with AA−1 = A−1A = IN .

In this appendix, we outline the proof that a two-dimensional statistic [||y||22 y†P⊥
G y] is a

maximal invariant for the subspace signal detection problem. The proof consists of two separate
parts as described in Appendix 3.C of [27] and Appendix 3.A of [17]. The first part needs to
show that transformation of the data by a matrix CU†, C ∈ G leaves the two-dimensional statistic
unchanged. In the second part, we need to show that given ||ỹ||22 = ||y||22 and ỹ†PG̃ỹ = y†PGy,
we can find a matrix Q ∈ G such that z̃ = Qz and Ỹ = QYV , where V is a unitary matrix of size K .

For the first part, let z̃ = CU†z, Ỹ = CU†YV , H̃ = CU†H, where C ∈ G. By simple substi-
tution in (3.23), it is easy to verify that: ||ỹ||22 = ||y||22 and ỹ†PG̃ỹ = y†PGy (i.e. transforming
the data by any C ∈ G does not change the two-dimensional statistic).

In order to keep the proof for the second part brief, we cite the work in Appendix 3.C
of [27], where details are given for a similar problem and is directly applicable here. With
the orthogonal projection matrix: PG = S−1/2H(H†S−1H)−1H†S−1/2 and y = S−1/2z it can be
verified that:

||y||22 = z†S−1z; y†PGy = z†
1.2S−1

1.2z1.2; y†P⊥
G y = z†

2S−1
22 z2, (3.54)

||ỹ||22 = z̃†S̃−1z̃; ỹ†PG̃ ỹ = z̃†
1.2S̃−1

1.2z̃1.2; ỹ†P⊥
G̃

ỹ = z̃†
2S̃−1

22 z̃2. (3.55)

The partitioned vector z and partitioned matrix S are as shown in (3.68) and (3.69) respec-
tively. The form of the partitioned vector z̃ and partitioned matrix S̃ is similar. Defining N × N
prediction matrices P, P̃, and whitening matrices W , W̃:

P =
[

IM −S12S−1
22

0 I(N−M)

]
; W =

[
S−1/2

1.2 0

0 S−1/2
22

]
, (3.56)
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P̃ =
[

IM −S̃12S̃−1
22

0 I(N−M)

]
; W̃ =

[
S̃−1/2

1.2 0

0 S̃−1/2
22

]
. (3.57)

It can be verified from (3.55) to (3.57) that the condition ||y||22 = ||ỹ||22 and ỹ†PG̃ỹ = y†PGy
implies:

||WPz||22 = ||W̃P̃z̃||22. (3.58)

It follows that for a unitary matrix U of the form:

U =
[

U1.2 0

0 U22

]
, (3.59)

we have:

z̃ = P̃−1W̃−1UWPz. (3.60)

Defining matrices C and Q as follows:

C = P̃−1W̃−1UWP,

Q = C, (3.61)

we have:

z̃ = Qz. (3.62)

Since the matrices: {P̃−1, W̃−1, U, W , P} ∈ G, both matrices C and Q above are members
of the group G, which specifically identifies the matrix Q ∈ G such that: z̃ = Qz. Substituting
equation (3.62) in ||y||22 = ||ỹ||22, with ||y||22 = z†S−1z, ||ỹ||22 = z̃†S̃−1z̃, S̃ = ỸỸ† and S =
YY†, it can be shown that: Ỹ = QYV , where V is a unitary matrix of size K .

Appendix 3.C
The joint PDFs of maximal invariant statistic conditioned on the null hypothesis H0 and the
alternative hypothesis H1 are derived for the subspace signal model. The case of mismatch
between the hypothesized signal subspace and the actual signal subspace is included in the
analysis. The joint PDF of maximal invariant statistics can be derived more easily by assuming
that a sequence of linear transformations are performed on the given data set. Since the covari-
ance matrix of the interference R is not known, it is important to keep in mind throughout this
appendix that these transformations are only for purposes of facilitating the analysis and are
not actually performed on the given data. With the exception of the signal matrices H and D,
we retain the same notation for the transformed random vectors in this appendix because this
does not cause any confusion given the context and also to prevent introducing vectors with
new notations. As a notation, the column space of a matrix H is denoted by <H>.

As shown in Appendix 3.B, the two-dimensional statistic [||y||22 y†PGy] is a maximal
invariant for the subspace signal detection problem for 1 ≤ M < N . Note that for M = N ,
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PG = IN and therefore the maximal invariant is the single scalar statistic ||y||22 as shown in
[57]. It can be verified that the transformation z → R−1/2z, Y → R−1/2Y and H → R−1/2H,
leaves both quantities ||y||22 = z†S−1z and y†PGy = z†S−1H(H†S−1H)−1H†S−1z unchanged
– the pre-multiplication is by a non-singular matrix and as such does not change the original
hypothesis testing problem. For the purposes of analysis therefore, it is convenient to assume
that the test vector and secondary data vectors have been pre-whitened by the above transform.
The various matrices after the pre-whitening operation are:

H̄
�= R−1/2H,

D̄2
�= R−1/2H⊥,

D̄
�= R−1/2D = R−1/2[H H⊥]

�= [H̄ D̄2],

PH̄ = H̄(H̄†H̄)−1H̄† = R−1/2H
(
H†R−1H

)−1
H†R−1/2.

(3.63)

While the columns of the matrices H and H⊥ span orthogonal and complementary sub-
spaces in CN×1, the two subspaces: <R−1/2H> and <R−1/2H⊥> are not orthogonal for
general R. Therefore, we denote the transformed matrix R−1/2H⊥ by D̄2 (and not by H̄⊥)
in the above equation. The last equation above defines the orthogonal projection matrix for
the subspace <H̄>. The distribution of the transformed test vector is: z ∼ CN (0N×1, IN ) for
hypothesis H0 and z ∼ CN (D̄γ , IN ) for hypothesis H1. Similarly, the transformed secondary
data vectors are distributed as: Y ∼ CN (0N×K , IK ⊗ IN ) for both hypotheses.

Next, a coordinate rotation is performed such that any vector in <H̄> (i.e. the column space
of H̄, which is a subspace of dimension M in CN×1) is represented by the first M components
of the transformed vector. In principle, the SVD of the transformed signal matrix results in:
H̄ = ŪB̄V̄†, and pre-multiplication by the unitary matrix Ū† performs the required rotation of
coordinate axes. The operations of pre-whitening followed by the rotation of coordinate axes
partition all vectors into two components (original notation retained): z = [z†

1 z†
2]†, z1 ∈ CM×1

and z2 ∈ C(N−M)×1. Similarly, the components of the pre-whitened and rotated secondary data
are Y1 ∈ CM×K and Y2 ∈ C(N−M)×K . Since the original data are modeled as multivariate Gaus-
sian, the distribution of the transformed data is also multivariate Gaussian and therefore:
H1 : z ∼ CN

(
Ū†D̄ γ , IN

)
, where Ū†D̄ γ = [v†

1 v†
2]†, with v1 ∈ CM×1 and v2 ∈ C(N−M)×1. The

coordinate rotation conserves the squared magnitude of signals and so:

||v1||22 + ||v2||22 = γ†D̄†ŪŪ†D̄ γ

= γ†D†R−1/2ŪŪ†R−1/2Dγ

= v†R−1v = γ†D†R−1Dγ. (3.64)

In the above v = Dγ from (3.12). The quantity ||v1||22 above is the squared magnitude of
the signal Ū†D̄γ in the subspace <Ū†R−1/2H> and is the same as the squared magnitude
of the signal D̄γ in the subspace <R−1/2H>. Thus,

||v1||22 = ||(Ū†PH̄Ū)Ū†D̄γ||22 = ||PH̄D̄γ||22
= γ†D†R−1H(H†R−1H)−1H†R−1Dγ. (3.65)
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It is useful to define the generalized mismatch angle θ and the SINR δ as follows:

cos2 (θ)
�= ||v1||22

||v||22
= γ†D†R−1H

(
H†R−1H

)−1
H†R−1Dγ

γ†D†R−1Dγ
. (3.66)

δ = γ†D†R−1Dγ. (3.67)

The pre-whitened and coordinated rotated secondary data matrix is multivariate Gaussian
and Y ∼ CN (0N×K , IK ⊗ IN ) for both hypotheses H0 and H1. The transformed matrices and
vectors are represented as follows:

z =
[

z1

z2

]
; Y =

[
Y1

Y2

]
, (3.68)

S =
[

S11 S12

S†
12 S22

]
=

[
Y1Y†

1 Y1Y†
2

Y2Y†
1 Y2Y†

2

]
. (3.69)

In terms of the partitioned matrix and partitioned vectors above, the two-dimensional
quantity: [(1 + z†

2S−1
22 z2)/(1 + z†S−1z); (1 + z†

2S−1
22 z2)−1] is a maximal invariant statistic. The

quantity (z†S−1z) = (z†
2S−1

22 z2) + z†
1.2S−1

1.2z1.2), where S1.2 = S11 − S12S−1
22 S21 and is the Schur

complement of the block S22 of matrix S. The M × 1 vector z1.2 = z1 − S12S−1
22 z2.

3.C.1 Distribution of Maximal Invariant Statistic
As described in [44], it is convenient to evaluate the joint distribution by holding the “2-
components” of various vectors fixed to obtain the conditional distribution of relevant quanti-
ties. Unless stated otherwise we use the term “conditional distribution” to imply distribution of
a quantity with the 2-components held constant. In the discussion below, the quantities z1 and
Y1 are random while the quantities z2 and Y2 are fixed and are not allowed to change. Let the
vectors an ∈ CK×1; n = 1, 2, . . . , K denote an orthonormal basis for CK×1. Since the columns
of Y2 ∈ C(N−M)×K are drawn from a zero-mean, statistically independent and identically dis-
tributed, complex Gaussian distribution, each realization of the matrix Y2 has rank (N − M) with
probability 1. For a fixed Y2, let the vectors an ∈ CK×1; n = 1, 2, . . . , (K − N + M) denote an
orthonormal basis for the null space of Y2. Thus, Y2an = 0(N−M)×1; n = 1, 2, . . . , (K−N +M).
The remaining vectors an ∈ CK×1; n = (K − N + M + 1), . . . , K therefore denote the ortho-
normal basis for the column space of Y2. Therefore,

S1.2 = Y1

[
IK − Y†

2 (Y2Y†
2 )−1Y2

]
Y†

1 = Y1

[
K−N+M∑

n=1

ana†
n

]
Y†

1 . (3.70)

The above result follows from the observation that the matrix Y†
2 (Y2Y†

2 )−1Y2

is idempotent and has eigenvalue 0 with multiplicity K − N + M with eigenvectors
an; n = 1, 2, . . . , (K − N + M) and eigenvalue 1 with multiplicity N − M with eigenvectors
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an; n = (K − N + M + 1), . . . , K . Since, an ∈ CK×1; n = 1, 2, . . . , K are an orthonormal basis
for CK×1, we have IK = ∑K

n=1 ana†
n, and therefore,

z1.2 = z1 − Y1Y†
2 (Y2Y†

2 )−1z2

= z1 − Y1

[
K∑

n=1

ana†
n

]
Y†

2 (Y2Y†
2 )−1z2

= z1 − Y1

[
K∑

n=K−N+M+1

ana†
n

]
Y†

2 (Y2Y†
2 )−1z2. (3.71)

The last equation above results from Y2an = 0(N−M)×1; n = 1, 2, . . . , (K − N + M). Since
Y1 ∼ CN (0M×K , IM ⊗ IK ) for both hypotheses H0 and H1, (3.70) and (3.71) show that the
quantities S1.2 and z1.2 are constructed from statistically independent components of Y1 and
are therefore statistically independent for fixed 2-components.

E2[z1.2|H0] = 0M×1,

E2[z1.2|H1] = v1

||v1||2 = (
γ†D†R−1Dγ

)
cos2(θ) = δ cos2(θ).

(3.72)

The last equation above follows from the definition of the generalized cosine of the mis-
match angle in (3.66) and the definition of the SINR in (3.67). Note that the original signal
matrix D = [H H⊥] was partitioned into two orthogonal and complimentary subspaces <H>

and <H⊥> in CN×1. And therefore, the two pre-whitened subspaces: <H̄> and <D̄2> are not
necessarily orthogonal subspaces. This means that components of the original signal vector
in the subspace <H⊥> (due to signal model mismatch) can add/subtract to the signal to be
detected in the original subspace <H>.

Define the K × 1 matrix W = Y†
2 (Y2Y†

2 )−1z2, the conditional covariance matrix of vector
z1.2 = z1 − Y1W under hypotheses H0 and H1 is:

E2[z1.2z†
1.2|H0] = (1 + W†W)IM

= (1 + z†
2S−1

22 z2)IM ,

E2[(z1.2 − v1)(z1.2 − v1)†|H1] = (1 + z†
2S−1

22 z2)IM .

(3.73)

The above result follows by letting y1(n) ∈ C1×K ; n = 1, 2, . . . , M denotes the nth row of
Y1. The (n, m)th element of the conditional covariance matrix of vector z1.2 under hypothesis
H0 for example is:

E2[z1.2(n)z∗
1.2(m)|H0] = δn,m + E2

[
W†y†

1(m)y1(n)W
]

= (1 + W†W)δn,m

= (1 + z†
2S−1

22 z2)δn,m; 1 ≤ n, m ≤ M. (3.74)

In the above, δn,m is the Kronecker delta, which is 1 for n = m and 0 otherwise.
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Define the signal-to-interference-plus-noise loss factor ρ = (1 + z†
2S−1

22 z2)−1. Using Propo-
sition 3.4, it follows that for a given loss factor ρ, the random variable s = (z†

1.2S−1
1.2z1.2)/

(1 + z†
2S−1

22 z2) = (z†
1.2S−1

1.2z1.2)ρ has a non-central complex F distribution with parameters M,
K − N + 1 and non-centrality parameter ρ ||v1||22 = ρ δ cos2(θ).

The distribution of the random variable s above was derived assuming that the 2-components
of the relevant matrices and vectors are fixed. The distribution is valid for every realization
of the 2-components and does not involve the specific realization of the 2-components them-
selves, the constraint can be removed and the distribution applies generally. With the signal
power in the pre-whitened hypothesized signal subspace <H̄> given by: ||v1||22, the signal
power in the orthogonal complement subspace of <H̄> is: v†R−1v − ||v1||22. For the assumed
distribution of the 2-components, the signal-to-interference-plus-noise loss factor ρ itself is
obtained from Proposition 3.4 to be non-central beta with parameters K − (N − M) + 1, N − M

and non-centrality parameter δ⊥
�= (v†R−1v) − ||v1||22 = (v†R−1v) sin2(θ). Using the notation

in Proposition 3.3 to denote the non-central complex beta density, the joint density function
of maximal invariant statistic r = (1 + s)−1 and ρ is given by:

f (r|ρ, H1) = fβ(r; K − N + 1, M|ρδ cos2(θ)),

f (ρ|H1) = fβ(ρ; K − (N − M) + 1, N − M|δ sin2(θ)),

f (r, ρ|H1) = f (r|ρ, H1) f (ρ|H1); 0 ≤ r, ρ ≤ 1.

(3.75)

For hypothesis H0, the joint density function of maximal invariants is obtained from above
by setting the signal vector to zero and so the quantity (v†R−1v) = 0 and so ||γ||22 = 0. With
both non-centrality parameters set to zero (i.e. δ = δ⊥ = 0), the beta densities in (3.75) are
central beta densities and so:

f (r, ρ|H0) = fβ(r; K − N + 1, M) fβ(ρ; K − (N − M) + 1, N − M); 0 ≤ r, ρ ≤ 1. (3.76)

Appendix 3.D
A number of distributions relevant to this work are outlined in this appendix without proof. We
do this mainly to facilitate the development in the rest of the paper. Detailed proofs of the finite
sum representation in Propositions 3.2 and 3.3 may be found in Reference 44. The notations
for random vectors and random variables are described in the introduction.

Proposition 3.1. Suppose the random vector x ∈ Cn×1, is Gaussian distributed with
E[x] = b; b ∈ Cn×1 and E[xx†] = In (denoted as x ∼ CN (b, In). Then the random variable
y = ||x||22 has a non-central complex Chi-squared density with n complex degrees of freedom
with non-centrality parameter c = ||b||22. This is denoted by y ∼ χ2

n(c). When c = 0, the random
variable y has a central complex Chi-squared distribution: y ∼ χ2

n.

Proposition 3.2. Given two statistically independent random vectors x ∈ Cn×1 and y ∈ Cm×1,
with x ∼ CN (b, In) and y ∼ CN (0m×1, Im). The random variable z = ||x||22/||y||22 has a non-
central complex F density with parameters n and m with non-centrality parameter c = ||b||22.
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This is denoted by z ∼ Fn,m(c). The cumulative distribution function of the random variable z
is given by:

P[z ≤ z0] = zn
0

(1 + z0)n+m−1

×
m−1∑
k=0

�(n + m)

�(k + n + 1)�(m − k)
zk

0Gk+1

(
c

1 + z0

)
, (3.77)

where the function Gk+1(x) is related to the incomplete gamma function as:

Gk+1(x) = e−x
k∑

n=0

xn

n! . (3.78)

Proposition 3.3. Given a random variable x ∼ Fn,m(c), the random variable y = (1 + x)−1

has a non-central complex beta density y ∼ βm,n(c):

fβ(y; m, n|c) = e−cy
m∑

k=0

(
m

k

)
�(m + n)

�(m + n + k)
ckfβ(y; m, n + k)

= e−cyfβ(y; m, n)
m∑

k=0

(
m

k

)
�(n)

�(n + k)
[c(1 − y)]k , (3.79)

where fβ(y; m, n) is the central complex beta density function given by:

fβ(y; m, n) = �(m + n)

�(m)�(n)
ym−1(1 − y)n−1 0 ≤ y ≤ 1. (3.80)

The cumulative distribution function of y is given by:

P[y ≤ y0] = 1 − 1

(m + n)

m−1∑
k=0

fβ(y0; m − k, n + k + 1)Gk+1(cy0). (3.81)

Proposition 3.4. Given a zero-mean complex Gaussian random matrix Y ∈ CN×K ; K ≥ N
with Y ∼ CN (0N×K , IN ⊗ IK ) and a statistically independent complex Gaussian random
vector x ∈ CN×1 with x ∼ CN (b, IN ), the random variable z = x†(YY†)−1x has a non-central
complex F density with parameters N and K − N + 1 with non-centrality parameter c = ||b||22.
That is, z ∼ FN ,K−N+1(c). And from Proposition 3.3, the random variable y = (1 + z)−1 has a
complex non-central beta density y ∼ βK−N+1,N (c).
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CHAPTER 4

Two-Stage Detectors for Point-Like
Targets in Gaussian Interference
with Unknown Spectral Properties
Antonio De Maio1, Chengpeng Hao2, and
Danilo Orlando3

4.1 Introduction: Principles of Design
In recent years, the design of the so-called tunable receivers has raised a significant interest in
the radar community. The class of tunable detectors has been shown to be an effective means
to attack detection of mainlobe targets or rejection of coherent repeater interferers in the
presence of clutter and/or possible noise-like interferers. As a matter of fact, a tunable receiver
allows adjusting the rate at which the probability of detection, Pd say, falls down when the
received signal departs from the nominal one. In this case, a mismatch between the nominal
and the actual steering vector is present. In the sequel, we refer to the receiver capability of
rejecting/detecting signals as directivity. Existing receivers can be classified according to their
directivity as follows [1]:

• robust receivers, which provide good detection performances in the presence of echoes
containing signal components not aligned with the nominal (transmitted) signal;

• selective receivers, which are capable of rejecting signals whose signature unlikely corre-
sponds to the signal of interest in order to avoid false alarms.

As already stated tunable receivers can be robust or selective by setting proper design para-
meters. Among the several papers published in open literature, we cite here References 1–19.
The expert reader would have a point concerning References 2 and 19, wherein the authors
design adaptive receivers assuming that the nominal signal belongs to a preassigned subspace,

1Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli “Federico
II”, Napoli, Italy
2State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing, China
3Facoltà di Ingegneria, Università degli Studi “Niccolò Cusano”, Roma, Italy
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Figure 4.1 Pd versus angular difference between the actual direction of the target and the nominal
one for the subspace detector.

H say, of the observables (see also Chapter 3). These decision schemes are typically classified
as steady receivers. However, they can be tuned modifying the properties of H. To be more
definite, in the decision statistic H is represented by a full-column-rank matrix H. The rank
and/or the angular separation (measured in terms of the inner product in the Euclidean space)
between the columns of H allow controlling the level of robustness to mismatched signals. To
have an idea, in Figure 4.1 (parameters used in this figure can be found in Subsection 4.2.2),
we plot Pd versus the difference between the actual target azimuthal angle and the nominal
one for a given value of the Signal-to-Noise Ratio (SNR) and for different angular separations
between the columns of H. In particular, we consider four increasing values of the angular
separation, i.e.,

�θ1 < �θ2 < �θ3 < �θ4. (4.1)

In References 7, 8, and 14, the authors derive receivers obtained by merging the decision
statistics of existing steady detectors. As a matter of fact, it is possible to exploit the similarities
between the decision statistics to come up with a receiver whose directivity encompasses those
of the merged stages as special cases. To give an example, consider the following statistics

d1 = A

B(1 + C)
, d2 = A

B
, d3 = A

BC
, (4.2)

where the random variables A, B, C ∈ R+, and combine them to obtain three new parametric
decision statistics

d12(µ12) = A

B(1 + µ12C)
, µ12 ∈ [0, 1], (4.3)
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Figure 4.2 Conic acceptance/rejection idea.

d13(µ13) = A

B(µ13 + C)
, µ13 ∈ [0, 1], (4.4)

d123(µ1, µ2) = A

B(µ1 + µ2C)
, (µ1, µ2) ∈ {[0, 1] × [0, 1]} \ (0, 0), (4.5)

where × denotes the Cartesian product of sets. Observe that d12 has operating characteristics
in between those of d1 and d2, d13 has operating characteristics in between those of d1 and d2,
while d123 has operating characteristics in between those of d1, d2, and d3.

Another family of tunable receivers can be found in References 3–6, where, at the design
stage, the authors assume that the possible useful signal belongs to a proper cone with axis the
nominal steering vector (see Figure 4.2). The directivity depends on the cone aperture, which
is governed by a design parameter. Decision schemes described so far compare the value of a
statistic with a threshold to decide for the presence of useful signal. We refer to this class of
receivers as parametric receivers.

A tunable receiver can also be obtained by cascading two (steady and/or parametric) detec-
tors with opposite behaviors in terms of directivity. The presence of a signal (H1 hypothesis)
is declared if and only if each stage is above the respective threshold, otherwise the overall
detector decides for the null hypothesis, H0 say. Observe that this architecture can be viewed
as a logical AND between the two stages (see Figure 4.3) and, hence, the order of the stages is
not significant to the decision (the truth table is given in Table 4.1). In the following, we refer
to this decision schemes as two-stage detectors.

The two-stage paradigm is widespread in radar systems. Several examples are available in
open literature. For instance, search radars, which do not provide fine range and/or angular
measurements, are usually used in conjunction with tracking radars, whose resolution cell is
small compared to that of a search radar [20, 21]. Another system exploiting the two-stage
concept is the so-called SideLobe Blanker (SLB), which allows to suppress coherent repeater
interference. The idea is that, employing an auxiliary antenna in addition to the main antenna, it
is possible, by a proper choice of the antenna gains, to distinguish signals entering the sidelobes
from those entering the main beam (and the former may be suppressed) [22–24]. As a matter
of fact, when the ratio between the power of the signal received by the auxiliary channel in a
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Data Global decision

First stage Local decision (Hi, i = 0,1)

Second stage
Local decision (Hi, i = 0,1)

Logical AND

Figure 4.3 The two-stage architecture.

Table 4.1 Truth table of a two-stage detector.

Local decision H0 H1

H0 H0 H0

H1 H0 H1

certain range cell and that of the signal received by the main channel is larger than a preassigned
threshold, then the radar signal in that range cell is blanked (the received signal is interpreted as
being produced by either an impulsive interference or the backscattering from discrete clutter
sources impinging on the radar sidelobes). The antenna gains and the blanking threshold have
to be set in order to

• maximize the probability of blanking an impulsive jammer;
• minimize the probability of blanking a true target received by the radar main beam.

However, in the presence of high-duty jammers, the SLB persists in the blanking mode for
long time with the consequence that target detection is inhibited. The SideLobe Canceler
(SLC) system represents a viable means to overcome this drawback. SLC uses an array of
auxiliary antennas to adaptively estimate the direction of arrival and the power of the jammers
and, subsequently, to modify the receiving pattern of the radar antenna placing nulls in the
jammers’ directions. Combinations of the SLB and SLC can be used to face with both type
of interferences [25]. It is important to observe here that these two-stage systems exploit
antenna-related techniques.

In the sequel, we focus on two-stage receivers based upon signal-processing techniques,
which have been preliminary investigated in References 26 and 12. The considered architec-
tures can be represented by the following equation

t1(Z)
H1

≷
H0

η1 and t2(Z)
H1

≷
H0

η2, (4.6)

where Z ∈ CN×(K+1), with N , K ∈ N , K ≥ N (see the next section for the justification of
such a constraint), is the data matrix, ti ∈ R, i = 1, 2, are the decision statistics, and (η1, η2)
is the pair of thresholds used to ensure a preassigned value of probability of false alarm (Pfa).
Actually, there exist infinite combinations of the above thresholds that provide the same value
of Pfa. To give evidence of this, in Figure 4.4 we show the contours of constant Pfa of a
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Figure 4.4 Contours of constant Pfa of a two-stage detector.

two-stage detector. On the other hand, the behavior in terms of directivity and Pd depends
on the specific values of the thresholds (this point is further explained in the next section).
Specifically, moving along a contour of constant Pfa yields infinite gradations between the two
stages in terms of matched detection performances and directivity (see Figures 4.5 and 4.6)
[13]. Observe that if t1 > 0 and t2 > 0, then

η1 = 0, η2 > 0 ⇒ two-stage receiver ≡ second stage, (4.7)

η1 > 0, η2 = 0 ⇒ two-stage receiver ≡ first stage. (4.8)

The range of directivity of a two-stage detector depends on the behavior of the single
stages. In particular, coupling detectors with opposite behaviors, for instance, a robust receiver
(as the Adaptive Matched Filter (AMF) [27] or the Subspace Detector (SD) [2]) and a selective
receiver (as the whitened adaptive beamformer orthogonal rejection test (W-ABORT) [28]),
leads to a decision scheme capable of ensuring a wide range of directivity. In addition, it is
possible to exploit the flexibility of the two-stage paradigm to reduce the range of directivity
towards the selectivity or robustness choosing detectors with similar behaviors. In Reference
1, it is shown that very selective receivers provide enhanced rejection capabilities of signals
not aligned with the nominal one at the price of lower detection performances for matched
signals. In order to compensate for the detection loss while retaining a high level of rejection of
mismatched signals, a selective receiver can be connected with another detector having a lower
selectivity but superior matched detection performance. The overall detector can guarantee
enhanced rejection capabilities of sidelobe signals and, at the same time, a limited performance
degradation under perfect matching conditions (selective two-stage receivers). Following the
same line of reasoning, robust two-stage decision schemes can be designed.
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In the next section, we review most of possible architectures that can be conceived following
the above design principles.

4.2 Two-Stage Architecture Description, Performance
Analysis, and Comparisons

This section is devoted to the description and performance assessment of the most possible
two-stage detectors that can be obtained by coupling existing decision schemes. For the reader’s
ease, as a preliminary step, we provide a brief description of the mathematical tools used for
the performance analysis. Specifically, given the data matrix Z = [z z1 . . . zK ], we formulate
the detection problem to be solved as a binary hypothesis testing problem, i.e.,⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

H0 :

{
z = n,
zk = nk , k = 1, . . . , K ,

H1 :

{
z = αp + n,
zk = nk , k = 1, . . . , K ,

(4.9)

where

• z ∈ CN×1, with N ∈ N the dimension of the considered vectors, denotes the Cell Under
Test (CUT);

• zk ∈ CN×1, k = 1, . . . , K , are the training samples (or secondary data) that are used for
estimation purposes; they are usually chosen as the range cells surrounding that under test
in order to preserve the homogeneity of the data. Moreover, we assume that K ≥ N to make
the sample covariance matrix of the secondary data invertible with probability one;

• n and nk , k = 1, . . . , K , are independent and identically distributed complex normal random
vectors [1] with zero mean and covariance matrix M ∈ CN×N ;

• α ∈ C is a deterministic but unknown factor that accounts for the effects of the transmitting
antenna gain, the radiation pattern of the array sensors, the two-way path loss, the radar
cross section of the target, etc.;

• p ∈ CN×1 is the actual steering vector.

Two remarks are now in order. First, notice that we assume the so-called homogeneous
environment, where CUT and secondary data share the same spectral properties of the distur-
bance. However, the homogeneous environment might not be met in realistic situations: see,
for example, Reference 29 and the references therein. Second, target returns may lie along
a direction different from that of the nominal steering vector, v say. For this reason, in the
sequel, we distinguish the actual steering vector from the nominal one and define the level of
mismatch between v and p as follows [30]

cos2 θ = |v†M−1p|2
(p†M−1p)(v†M−1v)

, (4.10)

where θ ∈ [0, π/2] is the mismatch angle between p and v.
Moreover, we recall here those well-known statistics which come in handy to evaluate

Pd (for matched and mismatched signals) and Pfa for the decision schemes described in the
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next subsections. More precisely, we will show that (in some situations) each stage can be
expressed as function of these variables and, hence, it becomes straightforward to evaluate the
probabilities of interest by means of closed form expressions. The first one is an equivalent
form of Kelly’s detector [31]

t̄K = t

1 − t
= |z†S−1v|2

(v†S−1v)

[
1 + z†S−1z − |z†S−1v|2

v†S−1v

] , (4.11)

where

t = |z†S−1v|2
(1 + z†S−1z)(v†S−1v)

(4.12)

is the well-known statistic of the receiver derived in Reference 31 with

S =
K∑

k=1

zz† (4.13)

K times the sample covariance matrix based upon the secondary data, while the second one is

β = 1

1 + z†S−1z − |z†S−1v|2
v†S−1v

(4.14)

and is referred to as loss factor (see (4.19)). It is not difficult to prove that under the H0

hypothesis [2, 30, 31]

• t̄K is distributed according to a complex central F-distribution with 1, K − N + 1 complex
degrees of freedom and it is independent of β;

• β obeys a complex central distribution with K − N + 2, N − 1 complex degrees of freedom.

On the other hand, under the H1 hypothesis

• t̄K, given β, is subject to a complex noncentral F-distribution with 1, K − N + 1 complex
degrees of freedom and noncentrality parameter rt defined as follows

r2
t = SNR β cos2 θ, (4.15)

where1

SNR = |α|2p†M−1p (4.16)

and cos2 θ is given by (4.10);

1It is important to note that the actual steering vector may differ from the nominal one.
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• β is ruled by a complex noncentral beta distribution with K −N +2, N −1 complex degrees
of freedom and noncentrality parameter rβ defined as

rβ = SNR sin2 θ, (4.17)

where

sin2 θ = 1 − cos2 θ. (4.18)

Observe that β ∈ [0, 1] and hence in (4.15)

SNRβ ≤ SNR. (4.19)

It is important to recall that the stochastic representations used in the next subsections are
aimed at writing the test statistics of the two-stage architectures in terms of the same random
variables. In Chapter 3, the reader can find alternative statistical characterizations of the most
common detectors.

Finally, for the sake of completeness, we report in Table 4.2 the expressions of the
probability density functions (pdfs) and Cumulative Distribution Functions (CDFs) of
the aforementioned complex random variables (for further details we refer the interested reader
to References 1, 2, and 32).

4.2.1 The Adaptive Sidelobe Blanker
The Adaptive Sidelobe Blanker (ASB) has been proposed in References 12 and 13 in order
to mitigate the high number of false alarms of the AMF [27] due to the presence of clutter
inhomogeneities. The ASB is obtained cascading the AMF, given by

Table 4.2 Pdfs and CDFs of useful complex distributions (the noncentrality parameter is denoted by δ).

Complex central F-distribution pdf f (x) = (N+M−1)!
(N−1)!(M−1)!

xN−1

(1+x)N+M , x ≥ 0
with N , M complex degrees of freedom

Complex central F-distribution CDF F(x) = xN

(1+x)N+M−1

∑M−1
k=0

(N+M−1
N+k

)
xk , x ≥ 0

with N , M complex degrees of freedom

Complex noncentral F-distribution pdf f (x) = (N+M−1)!
(N−1)!(M−1)!

xN−1e−δ2/(1+x)

(1+x)N+M

∑M
k=0

(M
k

) (N−1)!
(N+k−1)!

(
δ2x
1+x

)k
,

with N , M complex degrees of freedom x ≥ 0

Complex noncentral F-distribution CDF F(x) = xN e−δ2/(1+x)

(1+x)N+M−1

∑M−1
k=0

(N+M−1
N+k

)
xk
∑k

i=0

(
δ2

1+x

)i
1
i! , x ≥ 0

with N , M complex degrees of freedom

Complex central beta distribution pdf f (x) = (N+M−1)!
(N−1)!(M−1)! x

N−1(1 − x)M−1, 0 ≤ x ≤ 1
with N , M complex degrees of freedom

Complex central beta distribution CDF F(x) = xN+M−1 ∑M−1
k=0

(N+M−1
k

) (
1−x

x

)k
, 0 ≤ x ≤ 1

with N , M complex degrees of freedom

Complex noncentral beta distribution pdf f (x) = e−δ2x
∑N

k=0

(N
k

) (N+M−1)!δ2k xN−1(1−x)M+k−1

(M+k−1)!(N−1)! , 0 ≤ x ≤ 1
with N , M complex degrees of freedom

Complex noncentral beta distribution CDF F(x) = 1 − xN−1e−δ2x

(1−x)−M

∑N−1
k=0

(N+M−1
k+M

) (
1−x

x

)k ∑k
i=0

(δ2x)i

i! ,
with N , M complex degrees of freedom 0 ≤ x ≤ 1
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tAMF = |z†S−1v|2
v†S−1v

H1

≷
H0

ηAMF (4.20)

and the Adaptive Coherent Estimator (ACE) [33, 34], also known as Adaptive Normalized
Matched Filter (ANMF), whose expression is

tACE = |z†S−1v|2
(z†S−1z)(v†S−1v)

H1

≷
H0

ηACE. (4.21)

As already stated, in order to derive closed-form expressions for the Pfa and the Pd , we need
to recast the statistics of the two considered receivers as functions of the same quantities. To
this end, we use the following equivalent test in place of that defined in (4.21)

t̄ACE = tACE

1 − tACE

= |z†S−1v|2

(v†S−1v)

[
1 + z†S−1z − |z†S−1v|2

v†S−1v

]
[

1 + z†S−1z − |z†S−1v|2
v†S−1v

]
[

1 + z†S−1z − |z†S−1v|2
v†S−1v

]
− 1

= t̄K

1/β

1/β − 1

= t̄K

1

1 − β

H1

≷
H0

η̄ACE, (4.22)

where

η̄ACE = ηACE

1 − ηACE

. (4.23)

In addition, observe that the decision statistic of the AMF can be recast as

tAMF = |z†S−1v|2

(v†S−1v)

[
1 + z†S−1z − |z†S−1v|2

v†S−1v

] [
1 + z†S−1z − |z†S−1v|2

v†S−1v

]

= t̄K

β
. (4.24)

Using the above results, it is possible to write the Pfa of the ASB as follows

Pfa(ηAMF, η̄ACE) = PrH0

{
tAMF > ηAMF, t̄ACE > η̄ACE

}
= PrH0

{
t̄K

β
> ηAMF, t̄K

1

1 − β
> η̄ACE

}
= PrH0

{
t̄K > max (ηAMFβ, η̄ACE(1 − β))

}
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=
∫ 1

0
PrH0

{
t̄K > max (ηAMFβ, η̄ACE(1 − β))|β = b

}
fβ(b)db

= 1 −
∫ 1

0
PrH0

{
t̄K ≤ max (ηAMFβ, η̄ACE(1 − β))|β = b

}
fβ(b)db

= 1 −
∫ 1

0
F0( max (ηAMFb, η̄ACE(1 − b))fβ(b)db

= 1 −
∫ η̄ACE

ηAMF+η̄ACE

0
F0(η̄ACE(1 − b)) fβ(b)db −

∫ 1

η̄ACE
ηAMF+η̄ACE

F0(ηAMFb) fβ(b)db, (4.25)

where PrH0
{·} denotes the probability of the event argument assuming that H0 is in force,

PrH0
{A|B} is the probability of the event A conditioned to the event B, fβ( · ) is the pdf of β

under H0, and F0( · ) is the CDF of t̄K under H0 (see also Table 4.2). Observe that the fourth
equality comes from the total probability theorem.

An important remark is now in order. The ASB possesses the invariance property with
respect to the group of transformations defined by [35]

G = {
g :

[
z Zs

] → [
Tz TZsB†

]}
, (4.26)

where Zs = [z1 . . . zK ], B ∈ CK×K is a unitary matrix, and T ∈ CN×N is a full-rank matrix
such that the range of Tv coincides with the range of v. As a consequence, it ensures the CFAR
property with respect to the unknown covariance matrix of the interference.

Following the same line of reasoning, it is not difficult to show that the Pd of the ASB is
given by

Pd(ηAMF, η̄ACE, SNR, cos2 θ)

= PrH1
{tAMF > ηAMF, t̄ACE > η̄ACE}

= 1 −
∫ 1

0
PrH1

{
t̄K ≤ max (ηAMFβ, η̄ACE(1 − β))|β = b

}
fβ,rβ

(b)db

= 1 −
∫ η̄ACE

ηAMF+η̄ACE

0
F1(η̄ACE(1 − b))fβ,rβ

(b)db −
∫ 1

η̄ACE
ηAMF+η̄ACE

F1(ηAMFb)fβ,rβ
(b)db, (4.27)

where F1( · ) and fβ,rβ
( · ) are the CDF of t̄K and the pdf of β, respectively, under H1.

Equations (4.25) and (4.27) encompass the following special cases

(4.25) =
⎧⎨⎩

Pfa of the AMF, if η̄ACE = 0 and ηAMF > 0,
Pfa of the ACE, if η̄ACE > 0 and ηAMF = 0,
1 if η̄ACE = 0 and ηAMF = 0,

(4.28)

and

(4.27) =
⎧⎨⎩

Pd of the AMF, if η̄ACE = 0 and ηAMF > 0,
Pd of the ACE, if η̄ACE > 0 and ηAMF = 0,
1 if η̄ACE = 0 and ηAMF = 0.

(4.29)

In Figure 4.7, we show the contour plots corresponding to different values of Pfa in the
plane ηAMFη̄ACE assuming N = 16, K = 32. In Figure 4.8 we focus on the matched detection
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Figure 4.7 Contours of constant Pfa for the ASB assuming N = 16 and K = 32.
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Figure 4.8 Pd versus SNR for the ASB (solid line with dot marker) and Kelly’s receiver (solid
line and no marker) assuming N = 16, K = 32, and Pfa = 0.0001.

performance (cos2 θ = 0) and plot the Pd versus the SNR assuming Pfa = 10−4, N = 16,
and K = 32. In particular, we choose those threshold pairs that ensure the minimum and the
maximum loss at Pd = 0.9 with respect to Kelly’s detector usually regarded as benchmark
detector in case of matched signals. Observe that the maximum loss with respect to Kelly’s
receiver at Pd = 0.9 is about 1 dB.
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Figure 4.9 Contours of constant Pd for the ASB (solid line) and Kelly’s receiver (dotted line) with
N = 16, K = 32, Pfa = 0.0001, and threshold pair corresponding to the minimum
loss with respect to Kelly’s receiver at Pd = 0.9.

The performance of the ASB in the presence of mismatched signals are analyzed inspecting
the contours of constant Pd represented as a function of cos2 θ, plotted vertically, and of the
SNR, plotted horizontally. Such plots were introduced in Reference 10 and are referred to as
mesa plots. Observe that reading the values of Pd on horizontal lines of a mesa plot returns
the performance of the receiver in terms of Pd versus SNR for a preassigned value of the
mismatch angle θ. In Figures 4.9–4.11, we analyze the behavior of the ASB in the case of
mismatched signals in comparison with Kelly’s receiver. Specifically, in Figure 4.9 we show
that the ASB can provide better selectivity than Kelly’s receiver with a negligible loss in case
of matched signals. The threshold pair is chosen to obtain the minimum loss with respect to
Kelly’s receiver. In Figure 4.10, we consider the threshold configuration yielding the most
robust behavior, which coincides to that of the AMF. Finally, in Figure 4.11 the contours of
constant Pd refer to the most selective case with the constraint of a loss of about 1 dB with
respect to Kelly’s receiver at Pd = 0.9 and for matched signals. In this case, the ASB exhibits
the same directivity as the ACE.

4.2.2 Modifications of the ASB towards Robustness: The
Subspace-Based ASB

The Subspace-based ASB (S-ASB) is a two-stage detector proposed in Reference 16 to increase
the range of directivity of the ASB towards the robustness. To this end, the AMF has been
replaced with the SD [2], given by

tSD = z†S−1H(H†S−1H)−1H†S−1z

1 + z†S−1z

H1

≷
H0

ηSD, (4.30)
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Figure 4.10 Contours of constant Pd for the ASB (solid line) and Kelly’s receiver (dotted line)
with N = 16, K = 32, Pfa = 0.0001, and threshold pair corresponding to the most
robust behavior.
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Figure 4.11 Contours of constant Pd for the ASB (solid line) and Kelly’s receiver (dotted line)
with N = 16, K = 32, Pfa = 0.0001, and threshold pair corresponding to the most
selective behavior.

where

H = [
h1 h2 . . . hq

] ∈ CN×q, (4.31)
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is a full-column-rank matrix. Hereafter, we assume that the nominal steering vector belongs
to the subspace, H say, spanned by the columns of H. It follows that H can be represented by

H = [
v h2 · · · hq

]
. (4.32)

Notice that if q = 1 the SD coincides with Kelly’s receiver and achieves the highest detection
performances for matched signals. However, it is no longer robust to considerably mismatched
signals. For this reason, in the two-stage architecture, we set q > 1. In particular, as shown in
Reference 16, the choice

H = [v h2], (4.33)

with h2 a vector slightly mismatched with respect to v, guarantees an enhanced robustness
with respect to the ASB (see also Figure 4.1 that is obtained assuming N = 16, K = 32,
Pfa = 10−4, and q = 2). In the sequel, we choose h2 such that

|v†M−1h2|2
(v†M−1v)(h†

2M−1h2)
= 0.8949, (4.34)

where the (i, j)th element of the covariance matrix M is given by ρ|i−j|, i, j = 1, . . . , N , with
ρ = 0.95. Closed-form expressions for the Pd and Pfa can be obtained finding those stochastic
representations for the SD and the ACE that are functions of the same random variables. To
this end, we consider the following equivalent decision statistic for the SD

t̄SD = 1

1 − tSD

(4.35)

= 1 + z†S−1z

1 + z†S−1z − z†S−1H(H†S−1H)−1H†S−1z
(4.36)

= (1 + β2)(t̄K + 1), (4.37)

and for the ACE

t̄ACE = t̄K

[
1 + 1

β2(1 + β1) + β1

]
, (4.38)

where random variables β1 and β2 have the following statistical characterization

• under the H0 hypothesis
– β1 is a complex central F-distributed random variable with (N −q, K −N +q+1) complex degrees

of freedom;
– β2 is ruled by a complex central F-distribution with (q−1, K −N +2) complex degrees of freedom

and it is statistically independent of β1;
• under the H1 hypothesis

– β1 is a complex noncentral F-distributed random variable with (N − q, K − N + q + 1) complex
degrees of freedom and noncentrality parameter r1 defined by

r2
1 = SNR sin2 θ‖v2‖2; (4.39)
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– given β1, β2 is ruled by a complex noncentral F-distribution with (q − 1, K − N + 2) complex
degrees of freedom and noncentrality parameter r2 defined by

r2
2 = SNR sin2 θ‖v1‖2

1 + β1
. (4.40)

In (4.39) and (4.40), v1 ∈ C(q−1)×1 and v2 ∈ C(N−q)×1 are defined as follows

UM−1/2p =
√

p†M−1p

⎡⎣ v cos θ

v1 sin θ

v2 sin θ

⎤⎦ , (4.41)

where v ∈ C and U ∈ CN×N is the unitary matrix such that

UHqr =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 . . . 0
0 1 . . . 0
0 0 . . . 1
0 0 . . . 0
...

...
. . .

...

0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ RN×q (4.42)

with Hqr ∈ CN×q being a slice of unitary matrix (i.e., H†
qrHqr = Iq) obtained by means of the

QR factorization of H, namely

H = HqrHT , (4.43)

where HT ∈ Cq×q is an invertible upper triangular matrix. Moreover, the noncentrality param-
eter of the distribution of t̄K under H1 (given by (4.15)) can be recast as

r2
t = SNR cos2 θ

(1 + β1)(1 + β2)
. (4.44)

As a final remark, it is worth noticing that also the loss factor can be written as function of β1

and β2

β = 1

(1 + β1)(1 + β2)
. (4.45)

Further details on the derivation of the statistical characterization of the S-ASB can be found
in References 1 and 16.
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Now, gathering the above results, the Pfa of the S-ASB is given by

Pfa(η̄SD, η̄ACE) = PrH0

{
t̄SD > η̄SD, t̄ACE > η̄ACE

}
= PrH0

{
(1 + β2)(t̄K + 1) > η̄SD, t̄K

[
1 + 1

β2(1 + β1) + β1

]
> η̄ACE

}
= 1 − PrH0

{
t̄K ≤ max

(
η̄SD

1 + β2
− 1, η̄ACE

β2(1 + β1) + β1

(1 + β1)(1 + β2)

)}

= 1 −
∫ +∞

0

∫ +∞

0
PrH0

{
t̄K ≤ max

(
η̄SD

1 + β2
− 1, η̄ACE

β2(1 + β1) + β1

(1 + β1)(1 + β2)

)∣∣∣∣
β1 = b1, β2 = b2

}
fβ1 (b1) fβ2 (b2)db1db2

= 1 −
∫ +∞

0

∫ +∞

0
F0

(
max

(
η̄SD

1 + b2
− 1, η̄ACE

b2(1 + b1) + b1

(1 + b1)(1 + b2)

))
× fβ1 (b1) fβ2 (b2)db1db2, (4.46)

where fβ1 ( · ) and fβ2 ( · ) denote the pdfs of β1 and β2 under H0, respectively, F0( · ) is the CDF
of t̄K under the H0 hypothesis, and

η̄SD = 1

1 − ηSD

≥ 1. (4.47)

In Figure 4.12 we plot the contours of constant Pfa as functions of the two thresholds. It is
clear that there exist an infinite number of threshold pairs that provide the same value of Pfa.
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Figure 4.12 Contours of constant Pfa for the S-ASB assuming N = 16, K = 32, and q = 2.
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Figure 4.13 Pd versus SNR for the S-ASB (solid line with dot marker) and Kelly’s receiver (solid
line and no marker) assuming N = 16, K = 32, q = 2, and Pfa = 0.0001.

More importantly, (4.46) does not depend on H, but for q (see the degrees of freedom of the
considered distributions), and on M. It follows that the S-ASB guarantees the CFAR property
with respect to the covariance matrix of the interference.

As to the Pd , it is not difficult to show that

Pd(η̄SD, η̄ACE, SNR, H, cos2 θ) = PrH1

{
t̄SD > η̄SD, t̄ACE > η̄ACE

}
= 1 −

∫ +∞

0

∫ +∞

0
PrH1

{
t̄K ≤ max

(
η̄SD

1 + β2
− 1, η̄ACE

β2(1 + β1) + β1

(1 + β1)(1 + β2)

)∣∣∣∣
β1 = b1, β2 = b2

}
fβ2|β1 (b2|β1 = b1)fβ1,r1 (b1)db1db2

= 1 −
∫ +∞

0

∫ +∞

0
F1

(
max

(
η̄SD

1 + b2
− 1, η̄ACE

b2(1 + b1) + b1

(1 + b1)(1 + b2)

))
× fβ2|β1 (b2|β1 = b1)fβ1,r1 (b1)db1db2, (4.48)

where F1( · ) is the CDF of t̄K given β1 and β2 (and under H1), whereas fβ1,r1 ( · ) is the pdf of
β1 and fβ2|β1 ( · | · ) is the pdf of β2 given β1 both under H1.

In Figure 4.13, we show the limiting behaviors of the S-ASB obtained moving along the
contour of constant Pfa = 0.0001 assuming N = 16, K = 32, q = 2, and the columns of
H are chosen as described at the beginning of this section. The detection performances of
Kelly’s receiver are also reported for comparison purposes. Observe that the maximum loss
with respect to the benchmark at Pd = 0.9 is about 1 dB, while the minimum loss is about
0.2 dB. The mismatched detection performances are shown in Figures 4.14 and 4.15, where we
plot the contours of constant Pd (as functions of the SNR and cos2 θ) for the S-ASB and Kelly’s
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Figure 4.14 Contours of constant Pd for the S-ASB (solid line) and Kelly’s receiver (dotted line)
with N = 16, K = 32, q = 2, and threshold pair corresponding to the most robust
case.

SNR (dB)

0.3

0.5
0.7

0.9

0.99

0.3

0.5 0.7 0.9
0.99

10 12 14 16 18 20 22 24 26 28 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

co
s2 θ

Figure 4.15 Contours of constant Pd for the S-ASB (solid line) and Kelly’s receiver (dotted line)
with N = 16, K = 32, q = 2, and threshold pair corresponding to the most selective
case.

receiver. The curves shown in Figure 4.14 refer to that threshold pair that ensures the most
robust behavior for the S-ASB, while the contours of Figure 4.15 are obtained choosing the
threshold pair corresponding to the most selective case. Both figures assume N = 16, K = 32,
q = 2, and Pfa = 0.0001. Finally, in Figure 4.16, we compare the most robust behavior of the
S-ASB to that of the ASB. It is clear the enhanced robustness provided by the S-ASB.
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Figure 4.16 Contours of constant Pd for the S-ASB (solid line) and the ASB (dotted line) with
N = 16, K = 32, q = 2, and threshold pair corresponding to the most robust case.

4.2.3 Modifications of the ASB towards Selectivity
In this subsection, we present two-stage solutions that increase the selectivity of the ASB. More
precisely, such architectures exploit receivers that are more selective than the ACE, namely

• the Adaptive Beamformer Orthogonal Rejection Test (ABORT) devised in Reference 10
modifying the conventional noise-only hypothesis so that data possibly contain a fictitious
signal orthogonal to the nominal one in the quasi-whitened observation space, namely after
whitening data with the sample covariance matrix;

• the W-ABORT [28] obtained assuming the presence of a fictitious signal under H0 that is
orthogonal to the nominal one in the whitened observation space, namely after whitening
data with the true noise covariance matrix;

• the Rao detector [36] derived by means of the Rao test design criterion;
• the parametric receiver obtained by merging the test statistic of Kelly’s detector and that of

the W-ABORT (WA); this architecture is referred to in the following as KWA [14].

Observe that most of selective detectors provide excellent sidelobe rejection capabilities at the
price of lower matched detection performances (with respect to Kelly’s receiver). However,
as stated in Section 4.1, using selective receivers in a two-stage scheme allows to compensate
for the detection loss while retaining a high level of selectivity. In other words, two-stage
architectures provide a good trade off between matched detection performance and rejection
of unwanted signals.

As a final remark, it is important to notice that two-stage detectors herein considered possess
the invariance property with respect to the group of transformations (4.26). Thus, they ensure
the CFAR property with respect to the unknown covariance matrix of the interference.
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4.2.3.1 AMF-ABORT
The ABORT has been derived in Reference 10 by means of the Generalized Likelihood Ratio
Test (GLRT) [37] applied to the following binary hypothesis testing problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

H0 :

{
z = α⊥v⊥ + n,
zk = nk , k = 1, . . . , K ,

H1 :

{
z = αv + n,
zk = nk , k = 1, . . . , K ,

(4.49)

where α⊥ ∈ C and

v†
⊥S−1v = 0. (4.50)

The ABORT detector has the following form

tABORT = 1 + tAMF

2 + z†S−1z
(4.51)

= 1 + t̄K/β

1/β + 1 + t̄K/β

H1

≷
H0

ηABORT. (4.52)

In Reference 10, the authors propose a two-stage receiver obtained by cascading the AMF and
the ABORT as efficient implementation of the latter. In order to obtain closed-form expression
for the Pfa and Pd of this two-stage receiver, recast the ABORT as

t̄ABORT = tABORT

1 − tABORT

(4.53)

= t̄K + β
H1

≷
H0

η̄ABORT = ηABORT

1 − ηABORT

. (4.54)

It follows that the Pfa of the AMF-ABORT can be written as

Pfa(ηAMF, η̄ABORT) = PrH0
{tAMF > ηAMF, t̄ABORT > η̄ABORT}

= 1 − PrH0
{t̄K ≤ max (ηAMFβ, η̄ABORT − β)}

= 1 −
∫ 1

0
F0( max (ηAMFb, η̄ABORT − b)) fβ(b)db⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

= 1 −
[∫ η̄ABORT/(1+ηAMF)

0
F0(η̄ABORT − b) fβ(b)db +

∫ 1

η̄ABORT/(1+ηAMF)
F0(ηAMFb) fβ(b)db

]
if η̄ABORT/(1 + ηAMF) < 1,

= 1 −
∫ 1

0
F0(η̄ABORT − b) fβ(b)db

otherwise,
(4.55)

where F0( · ) is the CDF of t̄K under the H0 hypothesis and fβ( · ) is the pdf of β under the H0

hypothesis. In Figure 4.17, we plot the contours of constant Pfa for the AMF-ABORT assuming
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Figure 4.17 Contours of constant Pfa for the AMF-ABORT assuming N = 16 and K = 32.

N = 16 and K = 32. Observe that if the threshold value of one stage is given, then the Pfa is
constant within an interval of threshold values of the other stage, e.g., for Pfa = 0.0001

η̄ABORT ≈ 1.3 and 0 ≤ ηAMF ≤ 0.8,
0 ≤ η̄ABORT ≤ 0.6 and ηAMF ≈ 1.5.

(4.56)

On the other hand, the Pd has the following expression

Pd(ηAMF, η̄ABORT, SNR, cos2 θ) = PrH1
{tAMF > ηAMF, t̄ABORT > η̄ABORT}⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

= 1 −
[∫ η̄ABORT/(1+ηAMF)

0
F1(η̄ABORT − b) fβ,rβ

(b)db +
∫ 1

η̄ABORT/(1+ηAMF)
F1(ηAMFb) fβ,rβ

(b)db

]
if η̄ABORT/(1 + ηAMF) < 1,

= 1 −
∫ 1

0
F1(η̄ABORT − b) fβ,rβ

(b)db

otherwise,
(4.57)

where F1( · ) is the CDF of t̄K under the H1 hypothesis and fβ,rβ
( · ) is the pdf of β under the H1

hypothesis. In Figure 4.18 we plot Pd versus SNR for the AMF-ABORT assuming N = 16,
K = 32, and Pfa = 0.0001. More precisely, we show the curves corresponding to the minimum
and the maximum loss with respect to Kelly’s receiver at Pd = 0.9. Observe that the maximum
detection loss of this two-stage receiver is about 0.4 dB while that of the ASB is about 1 dB
for the chosen parameter values. However, the AMF-ABORT exhibits a lower selectivity with
respect to the ASB (and hence to the S-ASB) as shown in Figure 4.19, where we assume a
maximum loss with respect to Kelly’s detector of about 1 dB at Pd = 0.9 and for matched
signals. On the other hand, the AMF-ABORT guarantees the same robustness to mismatched
signals as the ASB, namely that of the AMF as shown in Figure 4.20, where the contours of
constant Pd are perfectly overlapped.
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Figure 4.18 Pd versus SNR for the AMF-ABORT (solid line with dot marker) and Kelly’s receiver
(solid line and no marker) assuming N = 16, K = 32, and Pfa = 0.0001.
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Figure 4.19 Contours of constant Pd for the AMF-ABORT (solid line) and the ASB (dotted line)
with N = 16, K = 32, and threshold pair corresponding to the most selective case
and under the constraint of a maximum loss with respect to Kelly’s receiver of about
1 dB at Pd = 0.9 and for matched signals.

4.2.3.2 AMF-Rao
The Rao detector [36] is very selective for low values of N and K , but it exhibits poor matched
detection performance. In order to face with this drawback, the Rao detector is coupled with
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Figure 4.20 Contours of constant Pd for the AMF-ABORT (solid line) and the ASB (dotted line)
with N = 16, K = 32, and threshold pair corresponding to the most robust case.

the AMF to obtain a two-stage detector capable of guaranteeing both enhanced rejection
performances of unwanted signals and good matched detection performance [36]. The Pfa and
the Pd can be easily evaluated after recasting the Rao detector as follows2

tRAO = |z†(S + zz†)−1v|2
v†S−1v

(4.58)

= tβ (4.59)

= t̄K

1 + t̄K

β
H1

≷
H0

ηRAO. (4.60)

It is not difficult to show that if β > ηRAO

Pfa(ηAMF, ηRAO) = PrH0
{tAMF > ηAMF, tRAO > ηRAO}

= 1 − PrH0
{t̄K ≤ max(ηAMFβ, ηRAO/(β − ηRAO))}

=
∫ 1

ηRAO

[
1 − F0(max(ηAMFb, ηRAO/(b − ηRAO)))

]
fβ(b)db (4.61)

2For further details on the Rao test design criterion, we refer the reader to Reference 38.
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Figure 4.21 Contours of constant Pfa for the AMF-Rao assuming N = 16 and K = 32.

and

Pd(ηAMF, ηRAO, SNR, cos2 θ) = PrH1
{tAMF > ηAMF, tRAO > ηRAO}

=
∫ 1

ηRAO

[
1 − F1(max(ηAMFb, ηRAO/(b − ηRAO)))

]
fβ,rβ

(b)db, (4.62)

where Fi( · ), i = 0, 1, is the CDF of t̄K under the Hi hypothesis, i = 0, 1, fβ( · ) and fβ,rβ
( · )

are the pdfs of β under H0 and H1, respectively. On the other hand, if β < ηRAO, Pfa =
Pd = 0.

The contour plots corresponding to different values of Pfa are shown in Figure 4.21 for
N = 16 and K = 32. Again, observe that, given a threshold value for one stage, the Pfa does
not change within a given interval of threshold values for the other stage. In Figure 4.22, we
show the matched detection performance of the AMF-Rao assuming N = 16, K = 32, and
Pfa = 0.0001. In particular, notice that the maximum loss with respect to Kelly’s receiver at
Pd = 0.9 is about 2 dB. This is due to the fact that the Rao detector can guarantee an enhanced
selectivity with respect to the ACE at the price of lower detection performances in case of
matched signals. As a matter of fact, the maximum loss of ASB and of the S-ASB with respect
to Kelly’s receiver is about 1 dB for the considered parameter values. The excellent rejection
capabilities of the Rao detector give rise to an increased selectivity of the overall detector as
shown in Figure 4.23 where the AMF-Rao is compared to the ASB under the constraint of a
maximum detection loss for matched signals with respect to Kelly’s detector of about 1 dB at
Pd = 0.9.
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Figure 4.22 Pd versus SNR for the AMF-Rao (solid line with dot marker) and Kelly’s receiver
(solid line and no marker) assuming N = 16, K = 32, and Pfa = 0.0001.
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Figure 4.23 Contours of constant Pd for the AMF-Rao (solid line) and the ASB (dotted line) with
N = 16, K = 32, and threshold pair corresponding to the most selective case under
the constraint of a maximum loss of about 1 dB with respect to Kelly’s receiver at
Pd = 0.9 and matched signals.
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4.2.3.3 AMF-WA
The W-ABORT has been proposed in Reference 28 by applying the GLRT to the following
binary hypothesis testing problem⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

H0 :

{
z = α⊥v⊥ + n,
zk = nk , k = 1, . . . , K ,

H1 :

{
z = αv + n,
zk = nk , k = 1, . . . , K ,

(4.63)

where α⊥ ∈ C and

v†
⊥M−1v = 0. (4.64)

The decision scheme is given by

tWA = 1[
|z†S−1v|2

(1 + z†S−1z)(v†S−1v)
− 1

]2

(1 + z†S−1z)

= 1[
t̄K

1 + t̄K

− 1

]2

(1/β + t̄K/β)

(4.65)

= (1 + t̄K)β
H1

≷
H0

ηWA. (4.66)

It follows that

Pfa(ηAMF, ηWA) = PrH0
{tAMF > ηAMF, tWA > ηWA}

= 1 − PrH0
{t̄K ≤ max(ηAMFβ, ηWA/β − 1)}

= 1 −
∫ 1

0
F0(max(ηAMFb, ηWA/b − 1)) fβ(b)db (4.67)

and

Pd(ηAMF, ηWA, SNR, cos2 θ) = PrH1
{tAMF > ηAMF, tWA > ηWA}

= 1 −
∫ 1

0
F1(max(ηAMFb, ηWA/b − 1)) fβ,rβ

(b)db, (4.68)

where Fi( · ), i = 0, 1, is the CDF of t̄K under the Hi hypothesis, i = 0, 1, fβ( · ) and fβ,rβ
( · ) are

the pdfs of β under H0 and H1, respectively.
The contours of constant Pfa are analogous to those already analyzed in previous subsections

and, hence, we do not report here such contour plots. As to the matched detection performance,
Figure 4.24 highlights that also for this receiver the maximum loss with respect to Kelly’s
detector increases to about 2 dB. In Figures 4.25 and 4.26, we compare the AMF-WA to the
AMF-Rao for different values of N and K . More precisely, Figure 4.25 assumes N = 16 and
K = 32, whereas in Figure 4.26 N = 30 and K = 60. The curves of both figures are obtained
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Figure 4.24 Pd versus SNR for the AMF-WA (solid line with dot marker) and Kelly’s receiver
(solid line and no marker) assuming N = 16, K = 32, and Pfa = 0.0001.
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Figure 4.25 Contours of constant Pd for the AMF-WA (solid line) and the AMF-Rao (dotted line)
with N = 16, K = 32, Pfa = 0.0001, and threshold pair corresponding to the most
selective case under the constraint of a maximum loss of about 1 dB with respect to
Kelly’s receiver at Pd = 0.9 and matched signals.
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Figure 4.26 Contours of constant Pd for the AMF-WA (solid line) and the AMF-Rao (dotted line)
with N = 30, K = 60, Pfa = 0.0001, and threshold pair corresponding to the most
selective case under the constraint of a maximum loss of about 1 dB with respect to
Kelly’s receiver at Pd = 0.9 and matched signals.

under the constraint that the loss with respect to Kelly’s detector is less than (about) 1 dB for
the perfectly matched case. It is clear that the AMF-Rao is more sensitive than the AMF-WA
to the system parameters N and K . More precisely, the AMF-Rao becomes less selective as N
and/or K increase and the AMF-WA detector is slightly superior to the AMF-Rao in terms of
selectivity for the system parameters considered in Figure 4.26.

4.2.3.4 AMF-KWA
The KWA is a receiver obtained by merging the statistic of Kelly’s detector and that of the
W-ABORT [14]. The decision statistic of the KWA is obtained by recasting Kelly’s receiver
and the W-ABORT in a proper manner. Specifically, consider the following equivalent form
of Kelly’s statistic

t̄K + 1 = 1 + z†S−1z

1 + z†S−1z − |z†S−1v|2
v†S−1v

(4.69)

and rewrite the W-ABORT as

tWA = 1 + z†S−1z[
1 + z†S−1z − |z†S−1v|2

v†S−1v

]2
. (4.70)
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The KWA detector is given by

tKWA = 1 + z†S−1z[
1 + z†S−1z − |z†S−1v|2

v†S−1v

]2γ
(4.71)

= (t̄K + 1)β2γ−1
H1

≷
H0

ηKWA, (4.72)

where γ ≥ 0 is the tuning parameter. Observe that it encompasses Kelly’s detector and
W-ABORT for γ = 1/2 and γ = 1, respectively. In addition, it is statistically equivalent
to the energy detector, namely to

z†S−1z
H1

≷
H0

ηED, (4.73)

for γ = 0.
Gathering the above result yields

Pfa(ηAMF, ηKWA, γ) = PrH0
{tAMF > ηAMF, tKWA > ηKWA}

= 1 − PrH0

{
t̄K ≤ max(ηAMFβ, ηKWA/β

2γ−1 − 1)
}

= 1 −
∫ 1

0
F0(max(ηAMFb, ηKWA/b2γ−1 − 1)) fβ(b)db (4.74)

and

Pd(ηAMF, ηKWA, SNR, cos2 θ, γ) = PrH1
{tAMF > ηAMF, tKWA > ηKWA}

= 1 −
∫ 1

0
F1(max(ηAMFb, ηKWA/b2γ−1 − 1)) fβ,rβ

(b)db, (4.75)

where Fi( · ), i = 0, 1, is the CDF of t̄K under the Hi hypothesis, i = 0, 1, fβ( · ) and fβ,rβ
( · ) are

the pdfs of β under H0 and H1, respectively.
For the sake of brevity, we do not report here the curves of constant Pfa, which highlight

that in order to preserve a preassigned value of Pfa, any variation of ηAMF requires a significant
modification of ηKWA(> 0.1). The matched detection performance (assuming γ = 1.3) is shown
in Figure 4.27, where the maximum loss with respect to Kelly’s receiver is greater than that
of the AMF-WA and AMF-Rao and increases to about 4 dB. As to the performance in case of
mismatched signals, we compare the AMF-KWA to the AMF-WA and the AMF-Rao assuming
N = 16, K = 32 and N = 30, K = 60. In particular, in Figures 4.28 and 4.29, we show that the
AMF-KWA with γ = 1.3 is slightly more selective than the AMF-WA and provides rejection
capabilities comparable to those of the AMF-Rao. The contours of constant Pd reported in
Figures 4.30 and 4.31 refer to N = 30 and K = 60. In this case, the AMF-KWA with γ = 1.3
is slightly superior in terms of selectivity to both the AMF-WA and the AMF-Rao.
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Figure 4.27 Pd versus SNR for the AMF-KWA (solid line with dot marker) and Kelly’s receiver
(solid line and no marker) assuming N = 16, K = 32, and Pfa = 0.0001.
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Figure 4.28 Contours of constant Pd for the AMF-KWA (solid line) and the AMF-WA (dotted
line) with N = 16, K = 32, Pfa = 0.0001, γ = 1.3, and threshold pair corresponding
to the most selective case under the constraint of a maximum loss of about 1 dB with
respect to Kelly’s receiver at Pd = 0.9 and matched signals.
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Figure 4.29 Contours of constant Pd for the AMF-KWA (solid line) and the AMF-Rao (dotted
line) with N = 16, K = 32, Pfa = 0.0001, γ = 1.3, and threshold pair corresponding
to the most selective case under the constraint of a maximum loss of about 1 dB with
respect to Kelly’s receiver at Pd = 0.9 and matched signals.
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Figure 4.30 Contours of constant Pd for the AMF-KWA (solid line) and the AMF-WA (dotted
line) with N = 30, K = 60, Pfa = 0.0001, γ = 1.3, and threshold pair corresponding
to the most selective case under the constraint of a maximum loss of about 1 dB with
respect to Kelly’s receiver at Pd = 0.9 and matched signals.
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Figure 4.31 Contours of constant Pd for the AMF-KWA (solid line) and the AMF-Rao (dotted
line) with N = 30, K = 60, Pfa = 0.0001, γ = 1.3, and threshold pair corresponding
to the most selective case under the constraint of a maximum loss of about 1 dB with
respect to Kelly’s receiver at Pd = 0.9 and matched signals.

4.2.4 Modifications of the ASB towards both Selectivity
and Robustness

This subsection is devoted to the analysis of those two-stage architectures that extend the range
of directivity of the ASB in both robustness and selectivity. To this end, the robust stage of the
ASB, namely the AMF, is replaced by the SD (see also Subsection 4.2.2), while in place of the
ACE, which is the selective stage of the ASB, more recent selective solutions (Rao detector,
W-ABORT, and KWA) are adopted (see also Subsection 4.2.3).

4.2.4.1 WAS-ASB
Cascading the SD and the W-ABORT yields a two-stage architecture that increases the selec-
tivity of the S-ASB. In the following, we refer to this receiver as WAS-ASB. In order to
derive closed-form expression for the Pfa and Pd we make use of stochastic representation
(4.37) for the SD and observe that the decision statistic of W-ABORT admits the following
expression

tWA = t̄K + 1

(β1 + 1)(β2 + 1)
. (4.76)
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Figure 4.32 Contours of constant Pfa for the WAS-ASB assuming N = 16, K = 32, and q = 2.

Thus, we can write

Pfa(η̄SD, ηWA) = PrH0
{t̄SD > η̄SD, tWA > ηWA}

= 1 − PrH0
{t̄K ≤ max(η̄SD/(1 + β2) − 1, ηWA(1 + β1)(1 + β2) − 1)}

= 1 −
∫ +∞

0

∫ +∞

0
F0

(
max

(
η̄SD

1 + b2
− 1, ηWA(1 + b1)(1 + b2) − 1

))
× fβ1 (b1) fβ2 (b2)db1db2 (4.77)

and

Pd(η̄SD, ηWA, cos2 θ, SNR, H) = PrH1
{t̄SD > η̄SD, tWA > ηWA}

= 1 −
∫ +∞

0

∫ +∞

0
F1

(
max

(
η̄SD

1 + b2
− 1, ηWA(1 + b1)(1 + b2) − 1

))
× fβ2|β1 (b2|β1 = b1) fβ1,r1 (b1)db1db2, (4.78)

where Fi( · ), i = 0, 1, is the CDF of t̄K under the Hi hypothesis, i = 0, 1, fβ1 ( · ) and fβ2 ( · ) are
the pdfs of β1 and β2 under H0, respectively, finally fβ1,r1 ( · ) is the pdf of β1 and fβ2|β1 ( · | · )
is the pdf of β2 given β1 both under H1.

Inspection of (4.77) highlights that the WAS-ASB possesses the CFAR property with respect
to M. For the reader’s ease, Figure 4.32 shows the contour plots for the WAS-ASB correspond-
ing to different values of Pfa, as functions of the threshold pairs, N = 16, K = 32, and r = 2.
Note that, for a preassigned value of Pfa, η̄SD does not approximately change for values of ηWA

ranging from 0 to 0.2. As to the matched detection performances, in Figure 4.33 we show the
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Figure 4.33 Pd versus SNR for the WAS-ASB (point marker) and Kelly’s receiver (no marker)
assuming N = 16, K = 32, q = 2, and Pfa = 0.0001.

limiting behaviors of the WAS-ASB assuming Pfa = 0.0001, N = 16, K = 32, q = 2, and
the columns of H are chosen as described at the beginning of Section 4.2.2. The maximum
detection loss with respect to Kelly’s receiver at Pd = 0.9 is about 2 dB, while the minimum
loss is about 0.35 dB.

The performance of the WAS-ASB in the presence of mismatched signals is analyzed in
Figures 4.34 and 4.35, where we plot the contours of constant Pd as functions of the SNR and
cos2 θ. More precisely, in Figure 4.34 we select the threshold pair that returns the most robust
behavior, while in Figure 4.35 the most selective behavior of the WAS-ASB is compared with
that of the S-ASB. Both figures assume that the maximum admissible loss with respect to
Kelly’s receiver is about 1 dB at Pd = 0.9 and refer to matched signals. It is clear that the
WAS-ASB provides a wider range of directivity than the S-ASB.

4.2.4.2 KWAS-ASB
The KWA described in Subsection 4.2.3.4 can be used in place of the W-ABORT as selective
stage of the WAS-ASB. The new resulting two-stage architecture further extends the range
of directivity of the WAS-ASB [14]. In the sequel, we refer to this detector as KWAS-ASB.
Exploiting the results contained in the previous section, it is easy to show that

Pfa(η̄SD, ηKWA, γ) = PrH0
{t̄SD > η̄SD, tKWA > ηKWA}

= 1 − PrH0
{t̄K ≤ max(η̄SD/(1 + β2) − 1, ηKWA[(1 + β1)(1 + β2)]2γ−1 − 1)}

= 1 −
∫ +∞

0

∫ +∞

0
F0

(
max

(
η̄SD

1 + b2
− 1, ηKWA[(1 + b1)(1 + b2)]2γ−1 − 1

))
× fβ1 (b1) fβ2 (b2)db1db2 (4.79)
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Figure 4.34 Contours of constant Pd for the WAS-ASB assuming N = 16, K = 32, q = 2,
Pfa = 0.0001, and threshold pair that ensures the most robust behavior with the
constraint of a maximum loss with respect to Kelly’s receiver of about 1 dB.
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Figure 4.35 Contours of constant Pd for the WAS-ASB (solid line) and the S-ASB (dotted line)
assuming N = 16, K = 32, q = 2, Pfa = 0.0001, and threshold pairs that ensure
the most selective behavior with the constraint of a maximum loss with respect to
Kelly’s receiver of about 1 dB.
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Figure 4.36 Pd versus SNR for the KWAS-ASB with γ = 1.3 (point marker) and Kelly’s receiver
(no marker) assuming N = 16, K = 32, q = 2, and Pfa = 0.0001.

and

Pd(η̄SD, ηKWA, cos2 θ, SNR, H, γ) = PrH1
{t̄SD > η̄SD, tKWA > ηKWA}

= 1 −
∫ +∞

0

∫ +∞

0
F1

(
max

(
η̄SD

1 + b2
− 1, ηKWA[(1 + b1)(1 + b2)]2γ−1 − 1

))
× fβ2|β1 (b2|β1 = b1) fβ1,r1 (b1)db1db2, (4.80)

where Fi( · ), i = 0, 1, is the CDF of t̄K under the Hi hypothesis, i = 0, 1, fβ1 ( · ) and fβ2 ( · ) are
the pdfs of β1 and β2 under H0, respectively, finally fβ1,r1 ( · ) is the pdf of β1 and fβ2|β1 ( · | · )
is the pdf of β2 given β1 both under H1.

The contours of constant Pfa are analogous to those of the WAS-ASB and, for this reason,
are omitted. The matched detection performance is shown in Figure 4.36: the maximum loss
with respect to Kelly’s receiver at Pd = 0.9 is about 4 dB (see also the limiting behaviors of
the WAS-ASB). As to the performance in the presence of mismatched signals, in Figure 4.37
we compare the KWAS-ASB and the WAS-ASB assuming N = 16, K = 32, and Pfa = 10−4.
Again, the threshold pairs are chosen to ensure a loss with respect to Kelly’s receiver of
about 1 dB at Pd = 0.9 and for matched signals. As expected, choosing values of γ greater
than 1 increases the selectivity of the overall detector. This trend is confirmed by inspecting
Figure 4.38, where N = 30 and K = 60. Finally, observe that the KWAS-ASB shares the
SD with the WAS-ASB and, as a consequence, they exhibit more or less the same behavior in
terms of robustness.
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Figure 4.37 Contours of constant Pd for the KWAS-ASB with γ = 1.3 (solid line) and the WAS-
ASB (dotted line) assuming N = 16, K = 32, q = 2, Pfa = 0.0001, and threshold
pairs that ensure the most selective behavior with the constraint of a maximum loss
with respect to Kelly’s receiver of about 1 dB.
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Figure 4.38 Contours of constant Pd for the KWAS-ASB with γ = 1.3 (solid line) and the WAS-
ASB (dotted line) assuming N = 30, K = 60, q = 2, Pfa = 0.0001, and threshold
pairs that ensure the most selective behavior with the constraint of a maximum loss
with respect to Kelly’s receiver of about 1 dB.
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4.2.4.3 SRao-ASB
Another modification of the S-ASB consists in substituting the ACE with the Rao detector. The
overall structure provides better detection performance than the S-ASB and, for low values of
N and K , than the KWAS-ASB. We refer to this receiver as SRao-ASB. The corresponding
expressions of the Pfa and Pd can be obtained using results of Sections 4.2.2 and 4.2.3.2. More
precisely, under the assumption that

1

(1 + β1)(1 + β2)
> ηRAO, (4.81)

the Pfa is given by

Pfa(η̄SD, ηRAO) = PrH0
{t̄SD > η̄SD, tRAO > ηRAO}

= 1 − PrH0

⎧⎪⎪⎨⎪⎪⎩t̄K ≤ max

⎛⎜⎜⎝ η̄SD

1 + β2
− 1,

ηRAO

1

(1 + β1)(1 + β2)
− ηRAO

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

=
∫ 1

ηRAO
−1

0

∫ 1
ηRAO(1+b2) −1

0

×
[

1 − F0

(
max

(
η̄SD

1 + b2
− 1,

ηRAO

[(1 + b1)(1 + b2)]−1 − ηRAO

))]
× fβ1 (b1) fβ2 (b2)db1db2, (4.82)

while Pd has the following expression

Pd(η̄SD, ηRAO, SNR, cos2 θ) = PrH1
{t̄SD > η̄SD, tRAO > ηRAO}

= 1 − PrH1

⎧⎪⎪⎨⎪⎪⎩t̄K ≤ max

⎛⎜⎜⎝ η̄SD

1 + β2
− 1,

ηRAO

1

(1 + β1)(1 + β2)
− ηRAO

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭

=
∫ 1

ηRAO
−1

0

∫ 1
ηRAO(1+b2) −1

0

×
[

1 − F1

(
max

(
η̄SD

1 + b2
− 1,

ηRAO

[(1 + b1)(1 + b2)]−1 − ηRAO

))]
× fβ2|β1 (b2|β1 = b1) fβ1,r1 (b1)db1db2, (4.83)

where F1( · ), fβ1 ( · ), fβ2 ( · ), fβ1,r1 ( · ), and fβ2|β1 ( · | · ) have been already defined. On the other
hand, if (4.81) is not valid, then Pfa = Pd = 0.

In Figure 4.39, we show the limiting behaviors of the SRao-ASB in comparison with
Kelly’s receiver. Observe that the maximum loss with respect to Kelly’s receiver exhibited
by the SRao-ASB is about 2 dB at Pd = 0.9 and is similar to that of the AMF-Rao. As to
mismatched detection performance, since the most robust behavior of the SRao-ASB is similar
to that of the KWAS-ASB, we focus on the rejection of unwanted signals. In Figures 4.40 and
4.41, we show that for low values of N and K the selectivity of the SRao-ASB is comparable
to that of the KWAS-ASB (see Figure 4.40), while for high values of N and K the SRao-ASB
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Figure 4.39 Pd versus SNR for the SRao-ASB with (point marker) and Kelly’s receiver (no
marker) assuming N = 16, K = 32, q = 2, and Pfa = 0.0001.
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Figure 4.40 Contours of constant Pd for the SRao-ASB (solid line) and the KWAS-ASB with
γ = 1.3 (dotted line) assuming N = 16, K = 32, q = 2, Pfa = 0.0001, and threshold
pairs that ensure the most selective behavior with the constraint of a maximum loss
with respect to Kelly’s receiver of about 1 dB.
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Figure 4.41 Contours of constant Pd for the SRao-ASB (solid line) and the KWAS-ASB with
γ = 1.3 (dotted line) assuming N = 30, K = 60, q = 2, Pfa = 0.0001, and threshold
pairs that ensure the most selective behavior with the constraint of a maximum loss
with respect to Kelly’s receiver of about 1 dB.

becomes less selective than the KWAS-ASB (see Figure 4.41). The above trend is typical of
two-stage receivers based upon the Rao detector (see Subsection 4.2.3.2), and it is due to the
fact that the Rao detector for high values of N and/or K becomes similar to the AMF.

4.2.5 Selective Two-Stage Detectors
In this subsection, the two-stage idea is exploited to design tunable receivers capable of ensur-
ing (practically) the same performance of Kelly’s detector under perfectly matching conditions
(namely, with a negligible detection loss with respect to Kelly’s detector) and enhanced rejec-
tion capabilities of unwanted signals. This is accomplished cascading Kelly’s detector, which
provides excellent detection performance for matched signals, and a selective receiver. More
precisely, we consider two different pairs

(1) Kelly’s receiver and the KWA (referred to as K-KWA);

(2) Kelly’s receiver and the Rao detector (referred to as K-Rao).

Remarkably, this two-stage decision schemes are invariant with respect to the transformation
group defined in Reference 35 and, hence, ensure the CFAR property with respect to the
covariance matrix of the interference. The derivations of the Pfa and Pd rely on the results
contained in previous sections (Figure 4.42).
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K-Rao (solid line with dot marker), and Kelly’s receiver (solid line and circle marker)
assuming N = 16, K = 32, and Pfa = 0.0001.

More precisely, the Pfa and Pd for the K-KWA are given by

Pfa(η̄K, ηKWA, γ) = PrH0
{t̄K > η̄K, tKWA > ηKWA}

= 1 − PrH0
{t̄K ≤ max(η̄K, ηKWA/β

2γ−1 − 1)}

= 1 −
∫ 1

0
F0(max(η̄K, ηKWA/b2γ−1 − 1)) fβ(b)db (4.84)

and

Pd(η̄K, ηKWA, γ , SNR, cos2 θ) = PrH1
{t̄K > η̄K, tKWA > ηKWA}

= 1 − PrH1
{t̄K ≤ max(η̄K, ηKWA/β

2γ−1 − 1)}

= 1 −
∫ 1

0
F1(max(η̄K, ηKWA/b2γ−1 − 1)) fβ,rβ

(b)db, (4.85)

respectively, where Fi( · ), i = 0, 1, is the CDF of t̄K under the Hi hypothesis, i = 0, 1, fβ( · )
and fβ,rβ

( · ) are the pdfs of β under H0 and H1, respectively.
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Figure 4.43 Contours of constant Pd for the K-KWA with γ = 1.3 (solid line) and the K-Rao
(dotted line) with N = 16, K = 32, and threshold pair corresponding to the most
selective case under the constraint of a maximum loss of about 0.4 dB with respect
to Kelly’s receiver at Pd = 0.9 and matched signals.

On the other hand, assuming that β > ηRAO, the performance of the K-Rao can be evaluated
as follows

Pfa(η̄K, ηRAO) = PrH0
{t̄K > η̄K, tRAO > ηRAO}

= 1 − PrH0
{t̄K ≤ max(η̄K, ηRAO/(β − ηRAO))}

=
∫ 1

ηRAO

[
1 − F0(max(η̄K, ηRAO/(b − ηRAO)))

]
fβ(b)db (4.86)

and

Pd(η̄K, ηRAO, γ , SNR, cos2 θ) = PrH1
{t̄K > η̄K, tRAO > ηRAO}

= 1 − PrH1
{t̄K ≤ max(η̄K, ηRAO/(β − ηRAO))}

=
∫ 1

ηRAO

[
1 − F1(max(η̄K, ηRAO/(b − ηRAO)))

]
fβ,rβ

(b)db. (4.87)

If β < ηRAO, then Pfa = Pd = 0. The contours of constant Pfa for the K-KWA and the K-Rao
are similar to those of the AMF-KWA and AMF-Rao, respectively, and are not reported here
for the sake of brevity. As to the matched detection performance, it is worth noticing that the
K-KWA exhibits a maximum loss with respect to Kelly’s receiver of about 4 dB (as seen for
the AMF-KWA), while the K-Rao has a maximum loss at Pd = 0.9 of about 2 dB (see also
the AMF-Rao). In Figure 4.43, we plot the contours of constant Pd using those threshold pairs



128 CHAPTER 4 • Two-Stage Detectors for Point-Like Targets in Gaussian

0.3

0.5

0.7

0.9

0.99

0.3

0.5

0.7

0.9

0.99

SNR (dB)

10 12 14 16 18 20 22 24 26 28 30
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

co
s2 θ

Figure 4.44 Contours of constant Pd for the K-KWA (solid line) and the KWAS-ASB (dotted
line) with N = 16, K = 32, γ = 1.3, and threshold pair corresponding to the most
selective case under the constraint of a maximum loss of about 0.4 dB with respect
to Kelly’s receiver at Pd = 0.9 and matched signals.

that guarantee a matched detection loss of about 0.4 dB with respect to Kelly’s receiver. The
mismatched detection performances are similar. More precisely, for SNR values lower than
24 dB, the K-KWA is slightly more selective than the K-Rao; conversely, for SNR > 24 dB, the
K-Rao provides slightly better rejection capabilities than the K-KWA. Finally, inspection of
Figure 4.44 highlights that the K-KWA can guarantee a better trade off between selectivity and
matched detection performance than KWAS-ASB. As a matter of fact, the K-KWA is slightly
more selective than the KWAS-ASB under the constraint of a matched detection loss of 0.4 dB
with respect to Kelly’s receiver.

Before concluding remarks, it is worth giving a qualitative summary of the detection algo-
rithms analyzed up to this point. To this end, a classification in terms of range of directivity is
given in Table 4.3, where Si, i = 0, 1, 2, . . . , is the level of selectivity with Si < Si+1, and Ri,
i = 0, 1, 2, . . . , denotes the level of robustness with Ri < Ri+1.

4.3 Conclusions
This chapter has provided a survey on the two-stage detection of point-like targets embed-
ded in homogeneous Gaussian disturbance. The family of two-stage detectors belongs to the
more general class of tunable receivers, which allow to modify their directivity tuning proper
parameters. They are obtained cascading two detectors with opposite behaviors in terms of
directivity. The presence of a signal is declared if and only if each stage is above the respective
threshold.
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Table 4.3 Reviewed two-stage detectors.

Maximum loss (dB) with
respect to the benchmark,

Receiver Directivity range N = 16, K = 32, Pfa = 10−4

ASB R0 S1 1
S-ASB R1 S1 1
AMF-ABORT R0 S0 0.4
AMF-Rao R0 S3 for low values of N , K ; 2

S1 for high values of N , K
AMF-WA R0 S2 2
AMF-KWA (γ = 1.3) R0 S3 4
WAS-ASB R1 S2 2
KWAS-ASB R1 S3 4
SRao-ASB R1 S3 for low values of N , K ; 2

S1 for high values of N , K
K-KWA (γ = 1.3) – S3 4
K-Rao – S3 for low values of N , K ; 2

S1 for high values of N , K

Several two-stage solutions are reviewed highlighting that it is possible to extend the range
of directivity towards selectivity and/or robustness. Closed-form expressions for the Pfa and
the Pd (for both matched and mismatched signals) are derived, and the performance analysis,
carried out by means of numerical integration techniques, is aimed at showing that these flexible
solutions can guarantee a good trade off between rejection of sidelobe interferers and detection
of mainlobe targets.

It is important to note that the considered two-stage detectors ensure the CFAR property with
respect to the disturbance covariance matrix. Moreover, from the perspective of the invariance
theory [35], the subspace-based detectors, which offer the widest range of directivity, do not
share the same invariance property as those detectors based upon the AMF or Kelly’s receiver.

Finally, plans for future work include several extensions of the considered detection strate-
gies; for instance, it would be of interest to address mismatch problems concerning extended
targets. In this case, new models are to be defined and analyzed. Another issue that needs atten-
tion is the design and the analysis of multistage detection structures, i.e., formed by cascading
more than two stages.

References
[1] F. Bandiera, D. Orlando, and G. Ricci, “Advanced Radar Detection Schemes under Mismatched

Signal Models,” Synthesis Lectures on Signal Processing No. 8, Morgan & Claypool Publishers,
San Rafael, CA, 2009.

[2] E. J. Kelly and K. Forsythe, “Adaptive Detection and Parameter Estimation for Multidimensional
Signal Models,” Lincoln Lab, MIT, Lexington, Tech. Rep. No. 848, April 19, 1989.



130 CHAPTER 4 • Two-Stage Detectors for Point-Like Targets in Gaussian

[3] A. De Maio, “Robust Adaptive Radar Detection in the Presence of Steering Vector Mismatches,”
IEEE Transactions on Aerospace and Electronic Systems, Vol. 41, No. 4, pp. 1322–1337, October
2005.

[4] F. Bandiera, A. De Maio, and G. Ricci, “Adaptive CFAR Radar Detection with Conic Rejection,”
IEEE Transactions on Signal Processing, Vol. 55, No. 6, pp. 2533–2541, June 2007.

[5] F. Bandiera, D. Orlando, and G. Ricci, “CFAR Detection Strategies for Distributed Targets under
Conic Constraints,” IEEE Transactions on Signal Processing, Vol. 57, No. 9, pp. 3305–3316,
September 2009.

[6] C. Hao, F. Bandiera, J. Yang, and D. Orlando, “Adaptive Detection of Multiple Point-Like Targets
Under Conic Constraints,” Progress in Electromagnetic Research, Vol. 129, pp. 231–250, 2012.

[7] S. Z. Kalson, “An Adaptive Array Detector with Mismatched Signal Rejection,” IEEE Transactions
on Aerospace and Electronic Systems, Vol. 28, No. 1, pp. 195–207, January 1992.

[8] C. Hao, B. Liu, S. Yan, and L. Cai, “Parametric Adaptive Radar Detector with Enhanced Mismatched
Signals Rejection Capabilities,” EURASIP Journal on Advances in Signal Processing, Vol. 2010,
Article ID 375136, 11 pages.

[9] A. De Maio, “Rao Test for Adaptive Detection in Gaussian Interference with Unknown Covariance
Matrix,” IEEE Transactions on Signal Processing, Vol. 55, No. 7, pp. 3577–3584, July 2007.

[10] N. B. Pulsone and C. M. Rader, “Adaptive Beamformer Orthogonal Rejection Test,” IEEE Trans-
actions on Signal Processing, Vol. 49, No. 3, pp. 521–529, March 2001.

[11] N. B. Pulsone and M. A. Zatman, “A Computationally Efficient Two-Step Implementation of the
GLRT,” IEEE Transactions on Signal Processing, Vol. 48, No. 3, pp. 609–616, March 2000.

[12] C. D. Richmond, “Statistical Performance Analysis of the Adaptive Sidelobe Blanker Detection
Algorithm,” Proceedings of 31st Annual Asilomar Conference on Signals, Systems, and Computers,
Pacific Grove, CA, USA, November 1997.

[13] C. D. Richmond, “Performance of the Adaptive Sidelobe Blanker Detection Algorithm in Homo-
geneous Environments,” IEEE Transactions on Signal Processing, Vol. 48, No. 5, pp. 1235–1247,
May 2000.

[14] F. Bandiera, D. Orlando, and G. Ricci, “One-Stage and Two-Stage Tunable Receivers,” IEEE
Transactions on Signal Processing, Vol. 57, No. 8, pp. 3264–3273, August 2009.

[15] C. D. Richmond, “The Theoretical Performance of a Class of Space–Time Adaptive Detection
and Training Strategies for Airborne Radar,” Proceedings of 32nd Annual Asilomar Conference on
Signals, Systems, and Computers, Pacific Grove, CA, USA, November 1998.

[16] F. Bandiera, D. Orlando, and G. Ricci, “A Subspace-Based Adaptive Sidelobe Blanker,” IEEE
Transactions on Signal Processing, Vol. 56, No. 9, pp. 4141–4151, September 2008.

[17] F. Bandiera, O. Besson, D. Orlando, and G. Ricci, “An Improved Adaptive Sidelobe Blanker”, IEEE
Transactions on Signal Processing, Vol. 56, No. 9, pp. 4152–4161, September 2008.

[18] C. Hao, B. Liu, and L. Cai, “Performance Analysis of a Two-Stage Rao Detector,” Signal Processing,
Vol. 91, No. 8, pp. 2141–2146, August 2011.

[19] G. A. Fabrizio, A. Farina, and M. D. Turley, “Spatial Adaptive Subspace Detection in OTH Radar,”
IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 4, pp. 1407–1427, October
2003.

[20] M. I. Skolnik, Introduction to Radar Systems, 3rd ed., McGraw-Hill, New York, NY, 2001.

[21] A. Farina and F. A. Studer, Radar Data Processing. Introduction and Tracking (Vol. I), John Wiley &
Sons, New York, NY, 1985.



References 131

[22] A. Farina, Antenna-Based Signal Processing Techniques for Radar Systems, Artech House, Boston,
MA, 1992.

[23] A. De Maio, A. Farina, and F. Gini, “Performance Analysis of the Sidelobe Blanking System for Two
Fluctuating Jammer Models,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 41,
No. 3, pp. 1082–1091, July 2005

[24] G. Cui, A. De Maio, A. Aubry, A. Farina, and L. Kong, “Advanced SLB Architectures with Invariant
Receivers,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 49, No. 2, pp. 798–818,
April 2013.

[25] A. Farina, L. Timmoneri, and R. Tosini, “Cascading SLB and SLC Devices,” Signal Processing,
Vol. 45, No. 2, pp. 261–266, August 1995.

[26] D. E. Kreithen and A. O. Steinhardt, “Target Detection in Post-STAP Undernulled Clutter,”
Proceedings of 29th Annual Asilomar Conference on Signals, Systems, and Computers, Vol. 2,
pp. 1203–1207, November 1995.

[27] F. C. Robey, D. L. Fuhrman, E. J. Kelly, and R. Nitzberg, “A CFAR Adaptive Matched Filter
Detector,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 29, No. 1, pp. 208–216,
January 1992.

[28] F. Bandiera, O. Besson, and G. Ricci, “An ABORT-Like Detector With Improved Mismatched
Signals Rejection Capabilities,” IEEE Transactions on Signal Processing, Vol. 56, No. 1,
pp. 14–25, January 2008.

[29] G. T. Capraro, A. Farina, H. Griffiths, and M. C. Wicks, “Knowledge-Based Radar Signal and Data
Processing (A Tutorial Review),” IEEE Signal Processing Magazine, Vol. 23, No. 1, pp. 18–29,
January 2006.

[30] E. J. Kelly, “Performance of an Adaptive Detection Algorithm; Rejection of Unwanted Signals,”
IEEE Transactions on Aerospace and Electronics Systems, Vol. 25, No. 2, pp. 122–123, March
1989.

[31] E. J. Kelly, “An Adaptive Detection Algorithm,” IEEE Transactions on Aerospace and Electronic
Systems, Vol. 22, No. 2, pp. 115–127, March 1986.

[32] N. R. Goodman, “Statistical Analysis Based on a Certain Multivariate Complex Gaussian Distribu-
tion (An Introduction),” The Annals of Mathematical Statistics, Vol. 34, No. 1, pp. 152–177, March
1963.

[33] E. Conte, M. Lops, and G. Ricci, “Asymptotically Optimum Radar Detection in Compound Gaussian
Noise,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 31, No. 2, pp. 617–625, April
1995.

[34] S. Kraut and L. L. Scharf, “The CFAR Adaptive Subspace Detector Is a Scale-Invariant GLRT,”
IEEE Transactions Signal Processing, Vol. 47, No. 9, pp. 2538–2541, September 1999.

[35] S. Bose and A. O. Steinhardt, “A Maximal Invariant Framework for Adaptive Detection with Struc-
tured and Unstructured Covariance Matrices,” IEEE Transactions on Signal Processing, Vol. 43,
No. 9, pp. 2164–2175, September 1995.

[36] A. De Maio, “Rao Test for Adaptive Detection in Gaussian Interference with Unknown Covariance
Matrix,” IEEE Transactions on Signal Processing, Vol. 55, No. 7, pp. 3577–3584, July 2007.

[37] J. Neyman and E. S. Pearson, “On the Use and Interpretation of Certain Test Criteria for Purpose
of Statistical Inference,” Biometrika, Vol. 20, pp. 175–240, 1928.

[38] S. M. Kay, Fundamentals of Statistical Signal Processing, Detection Theory, (Vol. II) Prentice-Hall,
Englewood Cliffs, NJ, 1998.





CHAPTER 5

Bayesian Radar Detection
in Interference
Pu Wang1, Hongbin Li2, and Braham Himed3

5.1 Introduction
Knowledge-aided space–time adaptive processing (KA-STAP) advocates an intelligent uti-
lization of a priori knowledge from various sources, such as previous measurements, digital
geographic maps, and real-time radar platform parameters. A natural and systematic way
for incorporating such a priori knowledge for detection is to employ a Bayesian inference
framework. This is appealing for KA-STAP because the Bayesian method not only allows for
the formal and systematic use of prior information (on the interference covariance matrix)
but also quantifies uncertainties presented in the prior knowledge through hyperparameters.
Moreover, by treating the interference covariance matrix as a random quantity, it provides an
additional flexibility of modeling data heterogeneity with computationally manageable detec-
tion strategies.

This chapter aims to discuss recent advances on Bayesian KA-STAP techniques. It unfolds
as the classical STAP signal model in Section 5.2 evolves into a framework of KA-STAP model
including a knowledge-aided homogeneous model, a knowledge-aided partially homogeneous
model, and a knowledge-aided compound Gaussian model in Section 5.3. Then in Section 5.4,
a hierarchical two-layered STAP model is discussed, which provides a new way to describe
the non-homogeneity between the test and training data. Section 5.5 is devoted to parametric
Bayesian detectors that integrate structural space–time information, i.e., a multi-channel auto-
regressive (AR) process, for the interference model and the consequent Bayesian estimation.
The resulting Bayesian parametric detectors allow a fast implementation and further reduction
in the amount of training data needed for reliable detection.

1Schlumberger-Doll Research, Cambridge, MA, USA.
2Stevens Institute of Technology, Hoboken, NJ, USA.
3AFRL/RYMD, Dayton, OH, USA.
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5.2 General STAP Signal Model
In STAP, J > 1 antennas transmit a coherent burst of N pulses at a constant pulse repetition
frequency fr = 1/Tr , where Tr is the pulse repetition interval (PRI). The transmitter frequency
is fc = c/λ, where c is the propagation velocity and λ is the wavelength. The waveform
returns are collected over a time interval referred to as the coherent processing interval (see
also Chapter 1). For each PRI, K + 1 fast-time (range) samples are collected to cover the
range interval. Detection is performed one at a time over the range bins of interest. For each
detection, there is a test range bin, and the neighboring range bins can be employed to provide
the training data. The received data are hence organized in a J ×N ×(K +1) datacube, as shown
in Figure 5.1 (the reader is referred to Chapter 2 for the details concerning the construction of
data vectors). For each range bin, the J × N data matrix is sampled from J antennas and N
pulses. Stacking the columns of each data matrix (at each range bin) on top of each other, we
obtain the test signal r0 at one range bin under test, and the training data rk , k = 1, 2, . . . , K ,
from K neighboring range bins. Note that rk , k = 0, 1, . . . , K , are vectors of dimension JN ×1.

With the three-dimensional datacube, the STAP problem is to detect a multi-channel signal
with an unknown amplitude in the presence of spatially and temporally correlated interference
[1, 2]:

H0 : r0 = d0, rk = dk , k = 1, 2, . . . , K ,
H1 : r0 = αp + d0, rk = dk , k = 1, 2, . . . , K ,

(5.1)

where p is the steering vector, assumed known, which depends on the array geometry and is
parameterized by the location or (angular) spatial frequency ωs and the velocity or (angular)
Doppler frequency ωd of the target. For a uniformly equi-spaced linear array, the (normalized)
steering vector is given as

p = pd ⊗ ps, (5.2)
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Figure 5.1 The three-dimensional STAP datacube within a coherent processing interval, where
J is the number of spatial antennas, N is the number of temporal pulses, and K is the
number of training range bins centered at the test range bin (indexed by 0).
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where pd = [1, ejωd , . . . , ejωd (N−1)]T /
√

N and ps = [1, ejωs , . . . , ejωs(J−1)]T /
√

J . In addition,
α denotes the unknown, deterministic, and complex-valued signal amplitude, and the interfer-
ences d0 and dk are assumed to follow the complex circular Gaussian distribution with zero
mean and covariance matrices M0 and Mk , respectively, i.e., dk ∼ CN (0, Mk), k = 1, 2, . . . , K .

The training data are assumed to contain information about the interference in the test
data. Otherwise, there is no incentive to utilize the training data. Classic STAP models provide
several ways to describe such relation between the test and training data. In particular, the
conventional STAP model can be used for the following scenarios:

• Homogeneous STAP Model (M0 = M1 = · · · = MK = Σ): The interference in the test
data d0 shares the same covariance matrix Σ with the interference dk in the training data.

• Partially Homogeneous STAP Model (M0 = λΣ, M1 = · · · = MK = Σ): Like the
homogeneous model, the training data share the same covariance matrix, i.e., M1 = · · · =
MK = Σ. However, there is an unknown power scaling factor λ between M0 and {Mk}K

k=1,
i.e., M0 = λΣ.

• Compound-Gaussian STAP Model includes two kinds of heterogeneity between the test
and training data and among the training data (see also Chapters 7–9). Specifically, d0

and dk , conditioned on the so-called texture components sk > 0, are complex circular
Gaussian distributed, i.e., dk|sk ∼ CN (0, s2

kΣ), where the texture components sk are positive
random variables, drawn from a correlated random process. Equivalently, we can write dk =
skwk , k = 0, 1, . . . , K , where the speckle components wk ∼ CN (0, Σ) are homogeneous
between the test and training data, while the texture components sk take into account the
heterogeneity.

All the above, STAP models can be represented by the graphical model shown in Figure 5.2a,
where the edges denote the conditional dependency among the corresponding nodes, the circles

MK MK

M1

M0 d0

d1

dK

M1

M0

rKdK

d1

ar0d0

r1 M1

M0

mK

m1

m0
r0

r1

rK

a

(a) (b)

MK

Figure 5.2 Directed graphical model representation of the STAP models (including homogeneous,
partially homogeneous, and (deterministic) compound-Gaussian models). Circles denote random
variables, squares denote deterministic model parameters, and diamonds denote user parameters.
Shaded circles further represent observed random variables. Note the different (deterministic versus
stochastic) ways of treating the interference covariance matrix {Mk}K

k=0 in the two STAP models.
(a) Conventional STAP model and (b) KA-STAP model.
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denote the random variables (e.g., the interference and, the observed test and training data),
the squares denote the deterministic model parameters (e.g., the target reflected amplitudes
and the interference covariance matrices in the conventional STAP model), and the diamonds
denote user parameters (e.g., the prior covariance matrices in the KA-STAP model introduced
in the following sections). Shaded circles further represent the observed random variables.

In both homogeneous and non-homogeneous scenarios, traditional STAP detectors such
as the Reed–Mallett–Brennan (RMB) detector [3], Kelly’s generalized likelihood ratio test
(GLRT) [4], the adaptive matched filter (AMF) [5], the locally most powerful invariant test
[6], the adaptive coherence estimator (ACE) [7,8], the Rao test [9], etc., involve estimating and
inverting the full-dimensional space–time interference covariance matrix M0. At a minimum,
K ≥ JN training data are needed to ensure a full-rank estimate of the JN × JN space–time
covariance matrix M0. Moreover, the RMB rule [3] suggests that, on average, K > (2JN − 3)
training data are needed to be within 3 dB from the optimum detection performance. Such
conditions may not be satisfied, especially in heterogeneous or dense-target environments
that offer limited training data. Thus, it is necessary to reduce the training data requirement
associated with traditional STAP detectors for practical applications.

To meet the challenge, the Bayesian approach models the covariance matrix {Mk}K
k=0

as a random parameter, as opposed to a deterministic parameter in the conventional STAP,
along with some prior probability distribution. Referred to as KA-STAP models, the Bayesian
STAP structure can be represented by the graphical model shown in Figure 5.2b, where an
additional layer of nodes is employed to model the interference covariance matrices Mk with
prior information embedded in the user parameters (denoted by diamonds) such as the prior
covariance matrices M̄k and the hyperparameter μk .

5.3 KA-STAP Models
Similar to the classical STAP models, the KA-STAP models still need to establish a relation
between the test and training data. This section discusses the evolution of the classical STAP
models towards the KA-STAP models and the development of Bayesian STAP detection asso-
ciated with each model. The key ingredient of such development is the use of the complex
inverse Wishart distribution on M0 and Mk , which is a conjugate prior for the complex circular
Gaussian distribution of the interferences for the sake of analytical tractability.

5.3.1 Knowledge-Aided Homogeneous Model
Let us first consider the homogeneous model (M0 = M1 = · · · = MK = Σ), where the
disturbance signals dk , k = 1, 2, . . . , K , are independent and identically distributed (i.i.d.)
with respect to d0, with complex circular Gaussian distribution dk ∼ CN (0, Σ). Accordingly,
the likelihood functions under H0 and H1 can be expressed as

p(r0, r1, . . . , rK |Σ, H0) = 1[
πJN det(Σ)

]K+1
exp

(
−Tr

(
Σ−1Γ (0)

))
p(r0, r1, . . . , rK |α, Σ, H1) = 1[

πJN det(Σ)
]K+1

exp
(
−Tr

(
Σ−1Γ (α)

))
,

(5.3)

Γ (α) = (r0 − αp)(r0 − αp)† + KS, (5.4)
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Figure 5.3 Conventional and knowledge-aided homogeneous STAP models with M0 =
M1 = · · · = MK = Σ. (a) Conventional homogeneous scenario and (b) knowledge-
aided homogeneous scenario.

with the sample covariance matrix given by

S = 1

K

K∑
k=1

rkr†
k . (5.5)

As shown in Figure 5.3, the knowledge-aided homogeneous STAP model no longer con-
siders Σ as a model parameter (denoted by a square), but as a random quantity (denoted
by a circle), which follows a complex inverse Wishart distribution with degrees of freedom
μ( > JN) and mean Σ̄ [10–13], i.e.,

Σ ∼ CW−1((μ − JN)Σ̄, μ), (5.6)

or, equivalently,

p(Σ) = det
(
(μ − JN)Σ̄

)μ
�̃(JN , μ) det(Σ)(μ+JN)

exp
(
−(μ − JN) Tr

(
Σ−1Σ̄

))
, (5.7)

where

�̃(JN , μ) = πJN(JN−1)/2
JN∏

k=1

� (μ − JN + k) , (5.8)

with � denoting the Gamma function. The matrix Σ̄ specifies the available a priori knowledge
about the interference, while μ quantifies the prior uncertainty. This is observed by noting that

E{Σ} = Σ̄, (5.9)

E{(Σ − Σ̄)2} = Σ̄
2 + (μ − JN)2 Tr{Σ̄}Σ̄

(μ − JN)2 − 1
. (5.10)

As a result, the larger μ is, the more reliable Σ̄ is. In Figure 5.3, both parameters Σ̄ and μ are
specified by the user. Nevertheless, μ can also be treated as a model parameter to be estimated,
which will be discussed later in this section.
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5.3.2 Bayesian GLRT (B-GLRT) and Bayesian AMF (B-AMF)
Since the interference covariance matrix Σ is a random variable, a GLRT for the knowledge-
aided homogeneous model can be obtained by averaging out the random covariance matrix Σ

and then finding the maximum likelihood (ML) estimate of the amplitude. Specifically, the
test statistic is given by [11–13]

TB-GLRT =
max

α

∫
p(r0, r1, . . . , rK |α, Σ, H1)p(Σ)dΣ∫

p(r0, r1, . . . , rK |Σ, H0)p(Σ)dΣ

= det
(
Γ (0) + (μ − JN)Σ̄

)
min

α
det

(
Γ (α) + (μ − JN)Σ̄

)
=

∣∣∣p†Σ̂
−1

r0

∣∣∣2(
r†

0Σ̂
−1

r0 + 1
) (

p†Σ̂
−1

p
) , (5.11)

where the integrals are evaluated as the complex inverse Wishart normalization factor and

Σ̂ = KS + (μ − JN)Σ̄, (5.12)

which linearly combines the sample covariance matrix S and the prior matrix Σ̄.
Compared with Kelly’s GLRT for the conventional homogeneous STAP model

TGLRT = |p†(KS)−1r0|2
(r†

0(KS)−1r0 + 1)(p†(KS)−1p)
, (5.13)

it is clear that the B-GLRT replaces the sample covariance matrix with a regularized covariance
matrix estimate Σ̂ of (5.12) which involves a simple colored loading between the sample
covariance matrix S and the a priori Σ̄. The loading factor is linearly proportional to the prior
parameter μ. It is well known that colored loading improves the performance of the Kelly’s
GLRT when the number of training signals is limited. In this regard, the B-GLRT provides
another interpretation of the colored-loading approach for the homogeneous STAP model.

Alternatively, the B-GLRT of (5.11) can be developed from a slightly different procedure.
Instead of integrating the likelihood function over Σ, one can maximize the joint likelihood
function of the signals over {rk}K

k=0 and Σ [13]:

TMAP-GLRT =
max

α
max
Σ

p(r0, r1, . . . , rK , Σ|α, H1)

max
Σ

p(r0, r1, . . . , rK , Σ|H0)

=
max

α

{
max
Σ

p(r0, r1, . . . , rK |α, Σ, H1)p(Σ)

}
max
Σ

p(r0, r1, . . . , rK |Σ, H0)p(Σ)
. (5.14)

It can be seen that the above estimates of Σ under H0 and H1 are the maximum a posteriori
(MAP) estimate. Similarly, one can replace the MAP estimate with the minimum mean square
error (MMSE) estimate in the joint likelihood function and obtain the MMSE-GLRT detector
that coincides with the B-GLRT [13].
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Different from the one-step GLRT principle, one can use a two-step approach, similar to
the classic AMF detector [5], to develop a B-AMF detector. First, assuming Σ is known, the
GLRT or the matched filter is given as [5]

T (Σ) =
max

α
p(r0, r1, . . . , rK |α, Σ, H1)

p(r0, r1, . . . , rK |Σ, H0)

= |p†Σ−1r0|2
p†Σ−1p

. (5.15)

Then, in the second step, the MAP estimate of Σ from training signals only is obtained as

Σ̂MAP,K = max
Σ

p(Σ|r1, . . . , rK )

= max
Σ

p(r0, r1, . . . , rK |Σ)p(Σ)

= Σ̂

JN + K + μ
. (5.16)

Finally, the Bayesian-MAP detector is obtained by substituting the MAP estimate from the
training signals back to (5.15) [13]

TB-AMF = T (Σ)|
Σ=Σ̂MAP,K

= |p†Σ̂
−1

r0|2
p†Σ̂

−1
p

, (5.17)

which extends the conventional AMF [5]

TAMF = |p†S−1r0|2
p†S−1p

, (5.18)

by colored loading.
The B-GLRT (5.11) and the B-AMF of (5.17) were numerically studied and compared

with the conventional AMF and GLRT detectors in a knowledge-aided homogeneous STAP
scenario, where the disturbances dk , k = 0, 1, . . . , K , are i.i.d. generated according to a random
covariance matrix Σ ∼ CW−1((μ − JN)Σ̄, μ), and the prior matrix Σ̄ has a Toeplitz-block-
Toeplitz structure corresponding to a multi-channel AR process. The space–time steering vector
p of (5.2) is generated using a uniform linear array of J = 4 antennas and N = 8 pulses with
a normalized spatial frequency ωs = 0.4π and a normalized Doppler frequency ωd = 0.4π.
The signal-to-interference-plus-noise ratio (SINR) is defined as

SINR = |α|2p†Σ̄
−1

p. (5.19)

The performance is evaluated in terms of probability of detection Pd for a range of SINRs
subject to a probability of false alarm Pfa = 0.01.

Figure 5.4 shows the detection performance in the knowledge-aided homogeneous sce-
nario with different values of K and μ. It is evident in Figure 5.4a and b that the B-GLRT and
B-AMF detectors show significant performance improvement over the conventional GLRT
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Figure 5.4 Conventional STAP detectors versus Bayesian STAP detectors in a knowledge-aided
homogeneous STAP model with J = 4, N = 8, and Pfa = 0.01. (a) K = 34 and
μ = 36; (b) K = 34 and μ = 64; (c) K = 64 and μ = 36; and (d) K = 64 and
μ = 64.

and AMF detectors, when the number of training data is comparable to the space–time dimen-
sion K ≈ JN . With sufficient training data, e.g., K = 64 in Figure 5.4c and d, the conventional
GLRT and AMF detectors improve drastically, but the utilization of the prior knowledge still
leads to some further improvement. In the four considered scenarios, the B-AMF and B-GLRT
detectors show close detection performance, while the conventional GLRT is slightly better
than the AMF in the case of small training data.

5.3.3 Selection of Hyperparameter
It should be noted that the hyperparameter μ is assumed to be known for the B-AMF and B-
GLRT detectors. The resulting B-GLRT detector of (5.11) and the B-AMF detector of (5.17)
are, hence, both functions of μ through the computation of Σ̂ in (5.12). When μ is unknown,
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Figure 5.5 Selection of the hyperparameter μ: fixed and adaptive approaches. (a) B-AMF with
varied hyperparameters μ; (b) B-GLRT with varied hyperparameters μ; (c) B-AMF
with varied hyperparameters μ; and (d) B-GLRT with varied hyperparameters μ.

one may choose a large value of μ if the prior covariance matrix Σ̄ is believed to be close to
the true Σ, according to the prior variance of (5.10). However, this subjective determination of
μ may not be sufficient to guide the users to assign a proper μ, if little information is available
regarding the prior uncertainty.

The impact of an over-estimated hyperparameter on the detection performance is illustrated
in Figure 5.5a for the B-AMF and Figure 5.5b for the B-GLRT, where the simulation configu-
ration is the same as in Figure 5.4. Two over-estimated μ = 50 and μ = 100 (versus the true
μ = 36) were used. Notable performance degradation was observed if the assigned μ is away
from the true μ. The larger the mismatch, the worse the performance.

This problem can be addressed by introducing a hierarchical stochastic homogeneous model
[14], i.e., μ is modeled as a discrete uniform random variable over an interval, i.e.,

μ ∼ unif(μm, μM ), (5.20)
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where μm(>JN) and μM are, respectively, the lower and upper bounds of μ. Then, the MMSE
estimate of μ can be derived by first computing the posterior distribution of μ|r1, . . . , rK ,

p(μ|r1, . . . , rK ) =
∫

p(μ, Σ|r1, . . . , rK )dΣ

=

∫
p(r1, . . . , rK |Σ)p(Σ|μ)p(μ)dΣ

p(r1, . . . , rK )

= c̄
det

(
(μ − JN)Σ̄

)μ
det

(
KS + (μ − JN)Σ̄

)K+μ

�̃(JN , K + μ)

�̃(JN , μ)
1μm ,μM (μ), (5.21)

where 1μm ,μM (μ) is the indicator function and c̄ is a normalization factor such that∫
p(μ|r1, . . . , rK )dμ = 1. Therefore, the MMSE estimate of μ is given by the posterior mean

of μ|r1, . . . , rK

μ̂MMSE =

μM∑
μ=μm

μh(μ)

μM∑
μ=μm

h(μ)
, (5.22)

where

h(μ) = det
(
(μ − JN)Σ̄

)μ
det

(
KS + (μ − JN)Σ̄

)K+μ

�̃(JN , K + μ)

�̃(JN , μ)
. (5.23)

In (5.22), the MMSE estimate of μ can be fully determined from the training signals {rk}K
k=1

via S, the prior covariance matrix Σ̄, and the hyperparameter range (μm, μM ). As a result, one
can directly use the MMSE estimate of μ to replace μ in (5.11) and (5.17), which yields the
automatic versions of the B-AMF and B-GLRT:

TB-GLRT = |p†Σ̂
−1

(μ̂MMSE) r0|2
(r†

0Σ̂
−1

(μ̂MMSE)r0 + 1)(p†Σ̂
−1

(μ̂MMSE) p)
, (5.24)

TB-AMF = |p†Σ̂
−1

(μ̂MMSE)r0|2
p†Σ̂

−1
(μ̂MMSE)p

, (5.25)

where

Σ̂(μ̂MMSE) = KS + (μ̂MMSE − JN)Σ̄, (5.26)

with μ̂MMSE given by (5.22). We refer to (5.24) and (5.25) as the B-GLRT and B-AMF with
the MMSE estimate of μ, respectively.

Another approach is to update the MMSE estimate of Σ based on the hierarchical Bayesian
model [14]. First, recognize that

p(Σ|r1, . . . , rK , μ) ∝ p(r1, . . . , rK |Σ)p(Σ|μ),

Σ|r1, . . . , rK , μ ∼ CW−1(KS + (μ − JN)Σ̄, K + μ),
(5.27)
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which results in

p(Σ|r1, . . . , rK ) =
μM∑

μ=μm

p(Σ|r1, . . . , rK , μ)p(μ|r1, . . . , rK ), (5.28)

with p(μ|r1, . . . , rK ) given by (5.21). The MMSE estimate of Σ is given by

Σ̂MMSE =
∫

Σp(Σ|r1, . . . , rK )dΣ

=
∫ μM∑

μ=μm

Σp(Σ|r1, . . . , rK , μ)p(μ|r1, . . . , rK )dΣ

=
μM∑

μ=μm

E{Σ|r1, . . . , rK , μ}p(μ|r1, . . . , rK )

(a)=
μM∑

μ=μm

KS + (μ − JN)Σ̄

K + μ − JN
p(μ|r1, . . . , rK ), (5.29)

where (a) holds since Σ|r1, . . . , rK , μ is complex inverse Wishart distributed as shown in
(5.27). The above equation can be rewritten as

Σ̂MMSE = βS + (1 − β)Σ̄, (5.30)

where β =
μM∑

μ=μm

Kp(μ|r1, . . . , rK )/(K +μ−JN). This is equivalent to a fully adaptive colored

loading for the covariance matrix estimation and hence, provides a fully adaptive Bayesian
detection by replacing Σ̂ in the B-GLRT and B-AMF detectors with Σ̂MMSE:

TB-GLRT = |p†Σ̂
−1
MMSEr0|2

(r†
0Σ̂

−1
MMSEr0 + 1)(p†Σ̂

−1
MMSEp)

, (5.31)

TB-AMF = |p†Σ̂
−1
MMSEr0|2

p†Σ̂
−1
MMSEp

, (5.32)

which are referred to as, respectively, the B-GLRT and B-AMF detectors with the MMSE
estimate of Σ.

With the same configuration in Figure 5.4, we evaluate the fully adaptive B-GLRT detectors
of (5.24) and (5.31) and the fully adaptive B-AMF detectors of (5.25) and (5.32). In Figure 5.5a
and b, two over-estimated values of μ = 50 and μ = 100 are used, when the number of
training data is fixed to K = 34. Notable performance losses were observed by comparing
their performance to the B-AMF and B-GLRT detectors with the true value of μ = 36. On
the other hand, the two fully adaptive solutions with the MMSE estimates of μ and Σ show
negligible performance loss for the B-AMF detector in Figure 5.5a and the B-GLRT detector
in Figure 5.5b. By increasing the number of training data from K = 34 to K = 64, the results
shown in Figure 5.5c and d reveal that the over-estimated hyperparameter μ = 100 makes the
B-AMF and B-GLRT detectors even worse than the conventional GLRT and AMF detectors
without using any prior knowledge.
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5.3.4 Extensions to Partially Homogeneous and
Compound-Gaussian Models

The Bayesian detection in the knowledge-aided homogeneous model has inspired the develop-
ment of KA-STAP detection for other conventional STAP models. Here, we briefly discuss two
extensions along this direction. The first model considered in this section is the knowledge-
aided partially homogeneous model and the Bayesian ACE detector [15]. One motivation to
consider the partially homogeneous model stems from the use of guard cells in radar signal
processing [8,16–18]. In STAP, a number of guard cells are often used to mitigate the sidelobe
effects and hence separate the test signal and training signals, which may lead to a power
difference between the test and training signals [2].

First, recall the conventional partially homogeneous model (M0 = λΣ and M1 = · · · =
MK = Σ) in (5.1) with the following assumptions

d0 ∼ CN (0, λΣ), dk ∼ CN (0, Σ), (5.33)

with λ denoting a deterministic but unknown scaling parameter. Similar to the knowledge-aided
homogeneous model, the knowledge-aided partially homogeneous model treats the interfer-
ence covariance matrix Σ as a random quantity with the following distribution

Σ ∼ CW−1((μ − JN)Σ̄, μ). (5.34)

The graphical model representation of the knowledge-aided partially homogeneous model
is shown in Figure 5.6, where the interference covariance matrix is considered to be a
random variable and the power scaling factor λ is considered as the model parameter to
be estimated.

Compared with the B-AMF and B-GLRT in the knowledge-aided homogeneous model, the
GLRT here takes one additional step to find the ML estimate of the scaling factor λ, in addition

dK

d0

d1S

m

l a

S

rK

r0

r1

Figure 5.6 The knowledge-aided partially homogeneous STAP model with M0 = λΣ and
M1 = · · · = MK = Σ and the power scaling factor λ is considered as an unknown
model parameter.
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to the integration over the random Σ and the ML estimate of α [15]; see Appendix 5.A for the
derivation. As a result, it is not surprising to see that the resulting GLRT

T =
∣∣∣p†Σ̂

−1
r0

∣∣∣2(
p†Σ̂

−1
p
) (

r†
0Σ̂

−1
r0

) , (5.35)

where Σ̂ = KS + (μ − N)Σ̄, is a Bayesian version of the ACE [8], which is the GLRT for the
conventional partially homogeneous model

TACE =
∣∣p†S−1r0

∣∣2(
p†S−1p

) (
r†

0S−1r0

) . (5.36)

The GLRT of (5.35), referred to as the KA-ACE detector, can also be derived using the MAP
and MMSE estimates of Σ instead of integrating it out in the likelihood function [15].

Next, we consider the compound-Gaussian model that explicitly takes into account the
power fluctuation (or the texture) across range bins, especially for heavy-tailed clutter dis-
tributions often seen in sea clutter. Similar to the knowledge-aided homogeneous model, the
knowledge-aided compound-Gaussian model further assumes the speckle component Σ as a
random variable. In particular, the interferences in both the test and the training range bins
consist of two components, i.e.,

dk = skwk , k = 0, 1, . . . , K , (5.37)

where the speckle component wk and the texture components s2
k are specified as

wk ∼ CN (0, Σ), (5.38)

Σ ∼ CW−1((μ − JN)Σ̄, μ), (5.39)

s2
k ∼ IG(qk , βk), (5.40)

with IG(q, β) denoting the inverse Gamma distribution with parameters q > 2 and β > 0

p(s2) = βq

�(q)(s2)q+1
e−β/s2

, s2 > 0. (5.41)

Note that the disturbances in all cells no longer follow the Gaussian assumption, after marginal-
izing the randomness of the covariance matrix and the texture components.

The Bayesian detection for this knowledge-aided compound-Gaussian model is developed
in a two-step approach [19]. First, assuming the speckle covariance matrix Σ is known, the
GLRT on the test signal r0 only is derived (see Appendix 5.B)

T = |p†Σ−1r0|2
(β0 + r†

0Σ
−1r0)(p†Σ−1p)

. (5.42)
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Then the second step is to replace the assumed Σ in the above GLRT by an estimate of Σ

from the training data {rk}K
k=1. Depending on the estimate of Σ from the training data, one can

derive three Bayesian detectors:

• The Marginal MAP Estimate of Σ maximizes the posterior distribution p(Σ|r1, . . . , rK ) (see
Appendix 5.B) which results in solving a fixed-point equation iteratively

(μ + K + JN)Σ = (μ − JN)Σ̄ +
K∑

k=1

(qk + JN)rkr†
k

βk + r†
kΣ

−1rk

. (5.43)

Note that qk and βk are the assumed hyperparameters related to the texture components.
• The Joint MAP Estimate of Σ jointly maximizes the posterior distribution p(Σ, s2

1, . . . ,
s2

K |r1, . . . , rK ) (see Appendix 5.B) first over s2
k and then Σ. Similarly, the joint MAP estimate

solves a slightly different fixed-point equation:

(μ + K + JN)Σ = (μ − JN)Σ̄ +
K∑

k=1

(qk + JN + 1)rkr†
k

βk + r†
kΣ

−1rk

. (5.44)

• The MMSE Estimate of Σ is given by the posterior mean

Σ̂MMSE = E{Σ|r1, . . . , rK } =
∫

Σp(Σ|r1, . . . , rK )dΣ, (5.45)

which cannot be computed analytically. A two-step Gibbs sampling utilizing known distri-
butions greatly facilitates the numerical computation:
(1) numerically generate texture samples si according to an inverse Gamma distribution as

s2
k |Σi−1, rk ∼ IG(qk + JN , βk + r†

k(Σi−1)−1rk), (5.46)

with Σi−1 denoting Σ from the (i − 1)-th iteration.
(2) numerically generate Σi according to an inverse complex Wishart distribution as

Σ|si, r1, . . . , rK ∼ CW−1

(
(μ − JN)Σ̄ +

K∑
k=1

r†
krk/{s2

k}i, μ + K

)
. (5.47)

The MMSE estimate of Σ is given as the average of the last Nr values of the numerically
generated samples Σi

Σ̂MMSE ≈ 1

Nr

Nbi+Nr∑
i=Nbi+1

Σi, (5.48)

where Nbi and Nr stand for, respectively, the number of burn-in iterations and the number
of Gibbs samples of Σi used in the MMSE estimate.

A closely related extension is a Bayesian detector of distributed targets in knowledge-aided
compound-Gaussian noise. Interested readers may refer to [20] for more details.
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5.4 Knowledge-Aided Two-Layered STAP Model
In the above section, the Bayesian approach has been applied to classical STAP models includ-
ing the homogeneous, the partially homogeneous, and the compound-Gaussian models, by
treating the interference covariance matrix as a random parameter and embedding the prior
knowledge through its prior distribution. The resulting Bayesian STAP detectors have been
observed to have a colored-loading form of the conventional STAP detectors, except the one
in the knowledge-aided compound-Gaussian model (Figure 5.7).

Distinct from the knowledge-aided models in the above section, a knowledge-aided two-
layered STAP model [21] that makes use of the randomness of the interference covariance
matrix is introduced within the Bayesian framework. The key concept of this two-layered STAP
model is to model the covariance mismatch M0 �= Mt(M1 = · · · = MK ) between the test and
training data in a stochastic way. This is achieved by assuming that the conditional distribution
of Mt |M0 is a complex inverse Wishart distribution with ν(>JN) degrees of freedom and
mean M0, i.e.,

Mt |M0 ∼ CW−1((ν − JN)M0, μ). (5.49)

On the one hand, the above conditional prior distribution guarantees that Mt in realizations
is different from M0 with probability one. On the other hand, they are not completely irrel-
evant; otherwise, the training data are meaningless for the inference of M0. The conditional
distribution establishes the relationship between M0 and Mk via the statistic characteristics,

E{Mt |M0} = M0, (5.50)

cov{Mt |M0} = M2
0 + (ν − JN) Tr{M0}M0

(ν − JN)2 − 1
, (5.51)

where (5.50) states that, conditioned on M0, the training data are still homogeneous in average
to the interference in the test data, and (5.51) reflects that the heterogeneity in average is
controlled by the hyperparameter ν. The larger the hyperparameter ν, the less heterogeneity
between the test and training data. Meanwhile, the second layer M0 is assumed to be complex

rKdKsKqk, bk

s1

s0 d0 r0

d1 r1q1, b1

q0, b0 a

m

S
S

Figure 5.7 The knowledge-aided compound-Gaussian STAP model with M0 = s2
0Σ and

Mk = s2
kΣ, k = 1, . . . , K .
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d0 r0 a

ν

M

m

d1 r1

Figure 5.8 The knowledge-aided two-layered STAP model, where the covariance matrix of train-
ing data is different from that of the test data through an edge, i.e., a conditional
stochastic way.

Wishart distributed with μ degrees of freedom and mean M̄, i.e.,

M0 ∼ CW(μ−1M̄, μ), (5.52)

where M̄ is again the prior knowledge. In a short summary, the stochastic non-homogeneous
model is characterized by two-layered stochastic modeling: one is the knowledge-aided mod-
eling of M0 via its prior distribution, similar to the knowledge-aided homogeneous model;
the other is the heterogeneity modeling between M0 and Mt via the conditional distribution
of Mt |M0. For each layer, a hyperparameter (μ or ν) is used to control the prior uncertainty
or the (average) heterogeneity. The graphical representation of the two-layered STAP model
is illustrated in Figure 5.8. Note that, in this knowledge-aided two-layered STAP model, the
dependence of the training data on the test data is reflected by the conditional distribution in
(5.49), as denoted by the edge from M0 to Mt in Figure 5.8.

Together with (5.1), (5.49), and (5.52), the GLRT utilizing the test and training signals
simultaneously takes the form of

T =
max

α

∫
p(r0, r1, . . . , rK |α, M0, Mt , H1)p(Mt |M0)p(M0)dM0∫

p(r0, r1, . . . , rK |M0, Mt , H0)p(Mt |M0)p(M0)dM0

(a)∝
max

α

∫
q(M0) exp

{
−(r0 − αp)†M−1

0 (r0 − αp)
}

dM0∫
q(M0) exp

{
−r†

0M−1
0 r0

}
dM0

, (5.53)

where

q(M0) = det(M0)
ν−1

det(KS + (ν − JN)M0)
ν−K p(M0). (5.54)

Unfortunately, the ML estimate of α under H0 has no closed-form solution. An approx-
imate ML estimate of α was proposed in [21] by realizing that the numerator is
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upper bounded

max
α

∫
q(M0) exp

{
−(r0 − αp)†M−1

0 (r0 − αp)
}

dM0

≤
∫

q(M0) exp
{
−r†

0M−1
0 r0

}
exp

{
|p†M−1

0 r0|2
p†M−1

0 p

}
dM0, (5.55)

since

max
α

(r0 − αp)†M−1
0 (r0 − αp) = r†

0M−1
0 r0 − |p†M−1

0 r0|2
p†M−1

0 p
. (5.56)

Expressing both the numerator and the denominator in terms of the posterior distribution
p(M0|r1, . . . , rK ) yields an approximate Bayesian GLRT (denoted as the AGLRT)

T =

∫
h(M0) exp

{
|p†M−1

0 r0|2
p†M−1

0 p

}
p(M0|r1, . . . , rK )dM0∫

h(M0)p(M0|r1, . . . , rK )dM0

, (5.57)

where

h(M0) = det(M0)
−1 exp

(
−r†

0M−1
0 r0

)
. (5.58)

It is seen that the Bayesian AGLRT of (5.57) is the ratio of the posterior mean of

h(M0) exp

(
|p†M−1

0 r0|2
p†M−1

0 p

)
to the posterior mean of h(M0) over the posterior distribution of

M0|r1, . . . , rK . Therefore, the numerical implementation can be obtained as

T =

Nbi+Nr∑
i=Nbi+1

h(M(i)
0 ) exp

⎛⎜⎝
∣∣∣∣p†

(
M(i)

0

)−1
r0

∣∣∣∣2
p†

(
M(i)

0

)−1
p

⎞⎟⎠
Nbi+Nr∑

i=Nbi+1
h(M(i)

0 )

, (5.59)

where M(i)
0 denotes the Gibbs sampler from the posterior distribution p(M0|r1, . . . , rK ) at the

i-th iteration. The Gibbs sampling of p(M0|r1, . . . , rK ) can be fulfilled via a two-step procedure:

• generate M(i+1)
0 according to the distribution of M0|Mt , r1, . . . , rK , which follows the com-

plex Wishart distribution

M0|Mt , r1, . . . , rK ∼ CW
((

μM̄
−1 + (ν − JN)M−1

t

)−1
, ν + μ

)
; (5.60)

• generate M(i+1)
t according to the distribution of Mt |M0, r1, . . . , rK , which follows the com-

plex inverse Wishart distribution

Mt |M0, r1, . . . , rK ∼ CW−1(KS + (ν − JN)M0, ν + K). (5.61)
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The B-AMF detector for the stochastic two-layered STAP model, on the other hand, takes
a simpler form as

T = |p†M̂
−1
0 r0|2

p†M̂
−1
0 p

, (5.62)

where M̂0 can be either the MMSE or MAP estimate of M0 based on the posterior distribution
of M0|r1, . . . , rK . The MMSE estimate is taken as the sample mean of the last Nr Gibbs sampler
of M(i)

0 from the above two-step Gibbs sampling procedure, i.e.,

M̂0,MMSE = 1

Nr

Nbi+Nr∑
i=Nbi+1

M(i)
0 . (5.63)

The MAP estimate of M0 is given by a closed-form expression:

M̂0,MAP = M̄
1/2

UΓ U†M̄
1/2

, (5.64)

where U is the matrix whose i-th column is the eigenvector of the pre-whitened sample covari-
ance matrix by the prior knowledge

S̄ = M̄
−1/2

SM̄
−1/2 = UΛU†, (5.65)

with Λ = diag{λi} denoting a diagonal matrix consisting of the eigenvalue of S̄, and Γ =
diag{γi} with

γi =
(

μ − JN − K

2μ
− Kλi

2(ν − JN)

)
+

√(
μ − JN − K

2μ
− Kλi

2(ν − JN)

)2

+ K(ν + μ − JN)

μ(ν − JN)
λi.

(5.66)

It was noted in [21] that the MAP estimate of M0 is computationally more appealing than the
MMSE estimate. The interpretation of the MAP estimate is also interesting. From (5.66), the
MAP estimator simply provides a regularization on the eigenvalues λi of the sample covariance
matrix while leaving the eigenvectors intact. Moreover, this regularization from λi to γi appears
to be nonlinear and controlled by the hyperparameters μ and ν.

The detection performance of the three Bayesian STAP detectors: (1) the Bayesian AGLRT
detector of (5.57); (2) the B-AMF of (5.62) with the MMSE estimate of M0 (5.63), denoted as
the BAMF-MMSE detector; and (3) the B-AMF of (5.62) with the MAP estimate of M0 (5.64),
denoted as the BAMF-MAP detector, is evaluated in the knowledge-aided two-layered STAP
model, where the interferences in the test and training data are generated with the covariance
matrix following a multi-channel AR process. The spatial and temporal signatures of the target
are the same as those used in Figure 5.4.

We first consider a scenario where the prior knowledge is relatively accurate with a large
value of μ and a relatively homogeneous training data with a large value of ν, as shown
in Figure 5.9a. A comparison with the conventional AMF and GLRT detectors shows the
improvement of the Bayesian detectors in the stochastic non-homogeneous case. In Figure 5.9b
where the heterogeneity between the test and training data is increased with a small value of
ν, the performance improvement of the Bayesian detectors over the conventional detectors
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J = 4, N = 8, K = 64, m = 64, v = 64, Pfa = 0.01 J = 4, N = 8, K = 64, m = 64, v = 33, Pfa  = 0.01 
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Figure 5.9 Probability of detection versus SINR in a knowledge-aided two-layered STAP model.
(a) μ = 64 and ν = 64 and (b) μ = 64 and ν = 33.

is increased. Among the Bayesian detectors, the Bayesian AGLRT and the BAMF-MMSE
detectors, at a cost of a higher complexity due to the Gibbs sampling, yield slightly better
performance than the simple BAMF-MAP detector in both cases.

Extensions of the knowledge-aided two-layered STAP model towards the partially homo-
geneous model were considered in [22]. Related efforts focusing on the covariance matrix
estimation and performance characterization under a similar but extended knowledge-aided
heterogeneous model can be found in [23] and [24].

5.5 Knowledge-Aided Parametric STAP Model
In this section, the structural information of the interference covariance matrices Mk is
exploited, together with the knowledge-aided concept, to facilitate the computation of the
Bayesian detectors. The resulting knowledge-aided parametric STAP model employs multi-
channel AR processes to describe the spatially and temporally correlated disturbances dk , k =
0, 1, . . . , K , in the test and training data. Extensive experimental studies have proved that
AR processes with a moderate model order are effective parametric models to represent the
spatio-temporal correlation.

Specifically, a knowledge-aided hybrid multi-channel AR (P) model is employed involving
a stochastic cross-channel or spatial covariance matrix Q and a deterministic AR correlation
matrix A, i.e.,

dk(n) = −
P∑

p=1
A†(p)dk(n − p) + εk(n), n = 1, 2, . . . , N , (5.67)

where dk(n) denote the n-th array snapshot from J spatial receivers, A = [AT (1), AT (2), . . . ,
AT (P)] ∈ C

JP×J with A(p) denoting the AR coefficient matrix for the p-th time lag, and εk(n)
denote the J × 1 spatial noise vectors that are temporally white but spatially colored Gaussian
noise: {εk(n)}K

k=0 ∼ CN (0, Q), with Q denoting the unknown J × J spatial covariance matrix.
Furthermore, the random spatial covariance matrix Q follows an inverse complex Wishart
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Figure 5.10 The knowledge-aided hybrid parametric STAP model, where M0 = M1 = · · · =
MK = f (A, Q) with the function f is characterized by a hybrid multi-channel AR
process with a random spatial covariance matrix and a deterministic correlation
matrix.

distribution with μ degrees of freedom and mean Q̄,

Q ∼ CW−1((μ − J)Q̄, μ), (5.68)

similar to the knowledge-aided non-parametric STAP model but in a smaller dimension
(J versus JN). Figure 5.10 illustrates the graphical model representation of the knowledge-aided
hybrid parametric STAP model, where the disturbances in all cells share the same covariance
matrix as a parametric form of the random matrix Q and the deterministic matrix A.

With the knowledge-aided hybrid STAP model, we first consider a two-step parametric
detector from the Bayesian framework, which is referred to as the knowledge-aided parametric
AMF (KA-PAMF) [25]. The first step is to develop the GLRT that is partially adaptive with
a given temporal AR coefficient A. Then, the partial adaptive GLRT is modified to arrive at a
fully adaptive detector by replacing A with the ML estimate obtained from training signals.

The partially adaptive P-GLRT with a given A is obtained by integrating out the random
spatial covariance matrix Q in the likelihood ratio [25]:

T =
max

α

∫
f1 (r0, r1, . . . , rK |α, Q ) p(Q)dQ∫

f0 (r0, r1, . . . , rK |α = 0, Q ) p(Q)dQ

=
max

α
det(Ξ1)

−L+J

det(Ξ0)
−L+J

=

∣∣∣∣N−1∑
n=P

p̃† (n) Ψ−1r̃0 (n)

∣∣∣∣2
N−1∑
n=P

p̃† (n) Ψ−1p̃ (n)

, (5.69)

where L = (K + 1) (N − P) + (μ + J), and

Ξi = R̂xx (α) + R̂
†
yx (α) A + A†R̂yx (α) + A†R̂yy (α) A + (μ − J) Q̄, (5.70)
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where the correlation matrices in (5.70) (conditioned on α) are defined as

R̂xx (α) =
N−1∑
n=P

[
r0 (n) − αp (n)

] [
r0 (n) − αp (n)

]† +
K∑

k=1

N−1∑
n=P

rk (n) r†
k (n), (5.71)

R̂yy (α) =
N−1∑
n=P

[
y0 (n) − αt (n)

] [
y0 (n) − αt (n)

]† +
K∑

k=1

N−1∑
n=P

yk (n) y†
k (n), (5.72)

R̂yx (α) =
N−1∑
n=P

[
y0 (n) − αt (n)

] [
r0 (n) − αp (n)

]† +
K∑

k=1

N−1∑
n=P

yk (n) r†
k (n), (5.73)

and the JP × 1 vectors yk(n) and t(n) are defined as yk (n) = [
rT

k (n − 1) , . . . , rT
k (n − P)

]T

and t (n) = [
pT (n − 1) , . . . , pT (n − P)

]T
. Meanwhile, the third line of (5.69) is due to the

ML estimate of α that minimizes the determinant of Ξ1

α̂ML = Tr (S̃
†
Ψ−1X̃0)

Tr (S̃
†
Ψ−1S̃)

, (5.74)

where

Ψ = X̃0P⊥X̃
†
0 +

K∑
k=1

X̃kX̃
†
k + (μ − J) Q̄, (5.75)

P⊥ denotes the projection matrix operator that projects the signal to the orthogonal complement
of the range of S̃

†
: P⊥ = I − P = I − S̃

†
(S̃

†
)+ with (·)+ denoting the Moore–Penrose

pseudoinverse, and

S̃ ∈ CJ×(N−P) = [
p̃ (P) , . . . , p̃ (N − 1)

]
, (5.76)

X̃k ∈ CJ×(N−P) = [
r̃k (P) , . . . , r̃k (N − 1)

]
, (5.77)

are formed from the temporally whitened signal r̃k(n) and the temporally whitened steering
vector p̃(n)

r̃k (n) = rk (n) + A†yk (n) , (5.78)

p̃ (n) = p (n) + A†t (n) . (5.79)

To arrive at a fully adaptive P-GLRT, the ML estimate of A is obtained by using the training
signals. Since the spatial covariance matrix is random, the likelihood function conditioned on
A is obtained by integrating the likelihood function over the distribution of Q as

f (r1, r2, . . . , rK |A) =
∫

f (r1, r2, . . . , rK |A, Q) p (Q) dQ

∝ det
(
Σ (A) + (μ − J) Q̄

)−(μ+K(N−P))
, (5.80)
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where

Σ(A) =
K∑

k=1

N−1∑
n=P

εk (n) ε
†
k (n). (5.81)

Therefore, the ML estimate of A is equivalent to minimizing the determinant in (5.80), which
is given by

ÂML = −R̂
−1
yy R̂yx, (5.82)

since Σ(A) + (μ − J) Q̄ � Σ(ÂML) + (μ − J) Q̄. Here, R̂xx, R̂yy, and R̂yx are defined as the
second term (training signals only), respectively, in (5.71)–(5.73).

Replacing A with the ML estimate ÂML, the fully adaptive KA-PAMF takes the following
test statistic

TKA-PAMF =

∣∣∣∣N−1∑
n=P

ˆ̃p†
(n) Ψ̂−1 ˆ̃r0 (n)

∣∣∣∣2
N−1∑
n=P

ˆ̃p†
(n) Ψ̂−1 ˆ̃p (n)

H1

≷
H0

γKA-PAMF, (5.83)

where γKA-PAMF is a threshold subject to a chosen probability of false alarm, the temporally
whitened vectors ˆ̃rk(n) and ˆ̃p(n) are similarly obtained as in (5.78) and (5.79) with A replaced
by the ML estimate ÂML, and the spatially whitening matrix Ψ̂ is obtained adaptively:

Ψ̂ = ˆ̃X0P̂
⊥ ˆ̃X

†

0 +
K∑

k=1

ˆ̃Xk
ˆ̃X

†

k + (μ − J) Q̄, (5.84)

which is similarly defined as (5.75). Compared with the Bayesian detectors in the above two
sections, the KA-PAMF of (5.83) uses a temporal whitening followed by a spatial whitening
process. In addition, the spatial whitening matrix Q̂ includes three components: one is from the
training data, one is from the target-canceled test data (the first term in (5.84)), and the prior
knowledge (μ − J)Q̄. The inclusion of the latter allows the KA-PAMF to better handle cases
with very limited training data. In terms of computational complexity, the KA-PAMF detector
is in general simpler to compute than the Bayesian detectors which performs a fully spatial
and temporal whitening with a computational complexity in the order of O(J3N3) to compute
M−1

0 , especially when the dimension JN is large. Specifically, the complexity of computing
(5.84) is about O(J2KNP2) + O(JN2). The complexity of O(JN2) for the KA-PAMF mostly
comes from the calculation of the spatial whitening matrix Ψ̂ and its inherent Moore–Penrose
pseudoinverse.

The second knowledge-aided parametric detector, referred to as the knowledge-aided para-
metric GLRT (KA-PGLRT), is obtained via a one-step joint estimation/optimization approach
for both the signal and the interference parameters. Since the exact ML estimate of the target
amplitude is intractable, we use the Schur complements and find an asymptotic but closed-
form ML estimate of the amplitude. In turn, it enables us to find a simple and closed-form
detection variable for the KA-PGLRT. The results show that the KA-PGLRT applies a joint
spatio-and-subtemporal whitening with the ability to utilize the prior knowledge.
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Specifically, the KA-PGLRT detector takes the following form

T =
max

α
max

A

∫
f1 (x0, x1, . . . , xK |α, A, Q ) p(Q)dQ

max
A

∫
f0 (x0, x1, . . . , xK |A, Q ) p(Q)dQ

=
max

α
max

A
det(Ξ1)

−L+J

max
A

det(Ξ0)
−L+J

=
det

(
R̂xx (0) − R̂

†
yx (0) R̂

−1
yy (0) R̂yx (0) + (μ − J) Q̄

)
min

α
det

(
R̂xx (α) − R̂

†
yx (α) R̂

−1
yy (α) R̂yx (α) + (μ − J) Q̄

) , (5.85)

where the second equation is obtained by integrating over the prior distribution of Q, and the
third equation is due to the maximization of det(Ξi) with respect to A, which gives

ÂML = −R̂
−1
yy (α) R̂yx (α) , (5.86)

where R̂yy(α) and R̂yx(α) are defined in (5.72) and (5.73), respectively.
As a result, the remaining step is to find the ML estimate of α, which is the solution to the

following minimization problem

α̂ML= arg min
α

det
(

R̂xx(α) − R̂
†
yx(α)R̂

−1
yy (α)R̂yx(α) + (μ − J)Q̄

)
. (5.87)

By recognizing that [26][
R̂xx(α) + (μ − J)Q̄

]
− R̂

†
yx(α)R̂

−1
yy (α)R̂yx(α) (5.88)

in (5.87) is the Schur complement of R̂yy(α), which is a part of a block matrix R̂(α) defined as

R̂(α) =
⎡⎣ R̂yy (α) R̂yx (α)

R̂
H
yx (α) R̂xx (α) + (μ − J) Q̄

⎤⎦ , (5.89)

the ML estimate of α can be obtained asymptotically as

α̂ML = Tr{S†R̂
−1
X X0} − Tr{T†R̂

−1
Y Y0}

Tr{S†R̂
−1
X S} − Tr{T†R̂

−1
Y T}

, (5.90)

where

S ∈ CJ(P+1)×(N−P) = [
sP+1 (P) , . . . , sP+1 (N − 1)

]
,

Xk = [
xk,P+1 (P) , . . . , xk,P+1 (N − 1)

]
,

T ∈ CJP×(N−P) = [t (P) , . . . , t (N − 1)] ,

Yk = [
yk (P) , . . . , yk (N − 1)

]
,
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with the following definitions sP+1 (n) = [
tT (n) , pT (n)

]T
and xk,P+1 (n) = [

yT
k (n) , rT

k (n)
]T

,
and

R̂X = X0P⊥
S X†

0 +
K∑

k=1

XkX†
k + Q̃, (5.91)

R̂Y = Y0P⊥
T Y†

0 +
K∑

k=1

YkY†
k , (5.92)

with

Q̃ =
[

0 0
0 (μ − J) Q̄

]
. (5.93)

Taking the above ML estimate of α back into the likelihood ratio of (5.85) and followed
by simplifications, the KA-PGLRT takes the final form as

TKA-PGLR =

∣∣∣∣N−1∑
n=P

s†
P+1 (n) R̂

−1
X x0,P+1 (n) −

N−1∑
n=P

t† (n) R̂
−1
Y y0 (n)

∣∣∣∣2
N−1∑
n=P

s†
P+1 (n) R̂

−1
X sP+1 (n) −

N−1∑
n=P

t† (n) R̂
−1
Y t (n)

H1

≷
H0

γKA-PGLR, (5.94)

where γKA-PGLR is a threshold subject to a probability of false alarm.
It is seen from (5.94) that the KA-PGLRT detector uses a knowledge-aided colored-loading

step via R̂X of (5.91) to incorporate the prior Q̄ . It can further be shown that the KA-PGLRT can
be interpreted as a spatio-and-subtemporal whitening across J(P + 1) dimensions. Compared
to the KA-PAMF detector, the performance improvement of the KA-PGLRT is achieved with
a slight additional complexity, due to the construction of Q̃ in (5.93) and the addition of Q̃ in
(5.91). The spatio-and-subtemporal whitening of the KA-PGLRT is in between a fully adaptive
STAP detector such as the B-AMF detector that employs a joint spatio-temporal whitening
across all JN dimensions and the conventional P-AMF [27] that utilizes successive temporal
whitening followed by spatial whitening. In terms of complexity of the whitening process, the
KA-PGLRT is about O(J2KN(P + 1)2) + O(J(P + 1)N2), more than O(J2KNP2) + O(JN2)
of the KA-PAMF, which is mainly due to the larger dimension J(P + 1) × (N − P) of S in
(5.91) compared with the dimension J × (N − P) of S̃ in (5.76).

We verify the performance of the KA-PAMF and KA-PGLRT detectors and compare these
two detectors with (1) a parametric matched filter (PMF) using the prior knowledge Q̄ as
a non-adaptive estimate of Q, (2) the conventional P-AMF [27], (3) the Bayesian P-AMF
(B-PAMF), and (4) the simplified P-GLRT [26]. The disturbance dk is generated as a multi-
channel AR(2) process with AR coefficients A and a spatial covariance matrix Q. The spatial
covariance matrix Q is generated in each Monte-Carlo run from an inverse Wishart distribution
with mean Q̄ .

We first consider cases with limited training data that are particularly challenging in prac-
tice. Specifically, when only K = 2 training signals are available, three scenarios are consid-
ered: (1) N = 4J , a preferable case for the conventional parametric detectors (i.e., the P-AMF
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and P-GLRT), which benefit from having many more pulses (temporal observations) than spa-
tial channels; (2) N = 2J , an intermediate case; and (3) the case of N = J + 2, an unfavorable
case for the conventional parametric detectors.

In the first scenario, the number of pulses is N = 16 and the number of channels is J = 4.
It has been shown that, if N  J , the conventional parametric detectors can cope with very
limited or even no range training signals [28]. Therefore, it is extremely competitive to compare
the knowledge-aided parametric detectors such as the KA-PAMF and the KA-PGLRT with
such parametric detectors in this case. As shown in Figure 5.11a with μ = 12 and Pfa = 0.01,
it is seen that all adaptive parametric detectors, except the non-adaptive PMF, achieve a close
detection performance. This indicates that K = 2 range training signals and N = 16 pulses
are adequate in the current case for the estimation of the unknown parameters A and Q.

Then, we reduce the number of pulses to N = 8, a less favorable case for the conventional
parametric detectors. With the same amount of range training data K = 2 as in the first
scenario, the conventional parametric detectors are expected to experience some degradation
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Figure 5.11 Probability of detection versus SINR with limited training data K = 2 when P = 2,
μ = 12, and Pfa = 0.01. (a) Adequate temporal observations (N  J); (b) moderate
temporal observation (N = 2J); and (c) limited temporal observation (N ≈ J).
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as the number of pulses N is reduced. As confirmed in Figure 5.11b, it is evident that the KA-
PAMF and KA-PGLRT detectors provide the best results among all considered parametric
detectors. The conventional P-AMF, however, is unable to reliably estimate Q and A from the
training data with a reduced number of temporal sampling and, hence, gives worse results.
Interestingly, the simplified P-GLRT which estimates the unknown parameters from both test
and training signals achieves a performance similar to that of the KA-PAMF, however with a
0.8 dB performance loss.

The most challenging case with K = 2 range training signals, J = 8 channels and N = 10
temporal observations, which is considered as an unfavorable case since J ≈ N in Figure 5.11c.
It is seen that the two knowledge-aided KA-PAMF and KA-PGLRT detectors that combine
knowledge learned from the test data, the training data, and the prior information are able to
significantly outperform the other parametric detectors. In particular, the performance gains
of the KA-PAMF and the KA-PGLRT over the simplified P-GLRT are, respectively, 6 dB and
6.6 dB. The performance gain is even larger by comparing the knowledge-aided parametric
detectors with the other parametric detectors.

Finally, we consider the performance of detection as a function of the number of pulses N ,
when J = 4, K = 2, P = 2, μ = 12, and SINR = 10 dB. The number of pulses increases from
N = 6 to N = 32, which corresponds to a transition from a low value of N/J to a high N/J .
The purpose of this simulation is to evaluate the convergence performance of the simulated
parametric detectors. As shown in Figure 5.12a, it is observed that the KA-PGLRT provides the
best detection performance among all considered detectors, and the KA-PAMF outperforms the
competitive P-GLRT when the number of pulses is small (i.e., N < 10), but becomes slightly
inferior when N is larger than 10. It is also observed that the KA-PAMF performs better than
its counterparts, e.g., the B-PAMF and the P-AMF, for almost all values of N . When N = 32
or larger, all adaptive parametric detectors converge and yield similar detection performance,
while the non-adaptive PMF performs the worst since it does not explore the useful information
from the training signals. The convergence performance with a large number of range training
data K = 64 is also confirmed in Figure 5.12b where J = 4, N = 32, P = 2, K = 64, μ = 12,
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Figure 5.12 Probability of detection converges as a function of the number of temporal samples
N or the number of training data K . (a) Performance convergence over N and (b)
converged convergence with a sufficiently large K .
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and Pfa = 0.01. It is seen that, all parametric adaptive detectors have the same performance,
while the non-adaptive PMF has a performance loss of about 3 dB. The results reveal that,
with sufficient training signals, the parametric adaptive detectors can fully learn the knowledge
about the unknown interference covariance matrix from the training data.

5.6 Summary
This chapter discusses recent developments of KA-STAP from a Bayesian framework in three
related signal models: (1) the knowledge-aided classical STAP model, (2) the knowledge-aided
two-layered STAP model, and (3) the knowledge-aided parametric STAP model. In each of
these models, the KA-STAP is found to yield an intuitive colored-loading solution, which out-
performs the conventional STAP in homogeneous, partially homogeneous, and heterogeneous
environments when training data is limited.

When there is an uncertainty with the prior knowledge, adaptive selection of the hyperpa-
rameter via a hierarchical stochastic model offers a powerful solution. In fact, the resulting
detector is not only hyperparameter free but also remarkably close to the optimal performance
when the true hyperparameter is known.

Finally, it is beneficial to integrate Bayesian inference with a structural model, namely
the multi-channel AR model for the spatial–temporal correlation of the interference, for KA-
STAP. The resulting detectors are able to take advantage of both: the colored loading from the
Bayesian framework and the successive temporal-and-spatial whitening from the structural
multi-channel AR modeling. This essentially allows us to tackle challenging STAP scenarios
when the training data are extremely limited.

Appendix 5.A

Derivation of KA-ACE of (5.35)
Following the knowledge-aided partially homogeneous STAP model, the GLRT can be
obtained as follows [15]

T =
max

α
max

λ

∫
p (r0, r1, . . . , rK |α, λ, Σ, H1 ) p(Σ)dΣ

max
λ

∫
p (r0, r1, . . . , rK |λ, Σ, H0 ) p(Σ)dΣ

(a)∝
max

α
max

λ
λ−N det

(
Γ (α, λ) + (μ − N)Σ̄

)−L

max
λ

λ−N det
(
Γ (0, λ) + (μ − N)Σ̄

)−L

(b)∝ r†
0Σ̂

−1
r0

min
α

(r0 − αp)† Σ̂
−1

(r0 − αp)

(c)∝
∣∣∣p†Σ̂

−1
r0

∣∣∣2(
p†Σ̂

−1
p
) (

r†
0Σ̂

−1
r0

) , (5.95)
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where (a) is obtained as the integrals are evaluated as complex inverse Wishart normalization
factors, Γ (α, λ) = λ−1(r0 − αp)(r0 − αp)† + KS, (b) holds by showing that the ML estimates
of λ under Hi, i = 0, 1, are given by

λ̂(α) = L − JN

JN
(r0 − αp)†Σ̂

−1
(r0 − αp), (5.96)

with L = K + μ + 1, (c) holds due to the ML estimate of α given by

α̂ML = p†Σ̂
−1

r0

p†Σ̂
−1

p
, (5.97)

and Σ̂ is defined in (5.12), the same as that in the homogeneous model

Σ̂ = KS + (μ − N)Σ̄. (5.98)

Appendix 5.B

Derivation of Bayesian Detectors in Knowledge-Aided
Compound-Gaussian Model
Here, derivations of the three Bayesian detectors in the knowledge-aided compound-Gaussian
model are provided, following the development in Reference 19. First, the GLRT with a known
speckle covariance matrix Σ takes the form of

T =
max

α

∫
p(r0|α, Σ, s2

0, H1)p(s2
0)ds2

0∫
p(r0|Σ, s2

0, H0)p(s2
0)ds2

0

(a)∝
max

α

(
β0 + (r0 − αp)†Σ−1(r0 − αp)

)−(q0+JN)

(
β0 + r†

0Σ
−1r0

)−(q0+JN)

(b)∝ |p†Σ−1r0|2
(β0 + r†

0Σ
−1r0)(p†Σ−1p)

, (5.99)

where (a) is due to the marginalization over s2
k , and (b) holds since α̂ = (p†Σ−1r0)/(p†Σ−1p).

To find an estimate of Σ from the training data {rk}K
k=1, one can consider the MAP estimate

of Σ by maximizing the posterior distribution p(Σ|r1, . . . , rK ) which is given as

p(Σ|r1, . . . , rK ) =
∫

p(Σ, s|r1, . . . , rK )ds

∝ exp
(−(μ − JN) Tr{Σ−1Σ̄})

det(Σ)μ+K+JN

K∏
k=1

[
βk + r†

kΣ
−1rk

]−(qk+JN)
, (5.100)
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where the joint posterior distribution p(Σ, s|r1, . . . , rK ) can be computed as

p(Σ, s|r1, . . . , rK ) ∝ p(r1, . . . , rK |Σ, s)p(Σ)

[
K∏

k=1

p(s2
k )

]

∝ exp
(−(μ − JN) Tr{Σ−1Σ̄})

det(Σ)μ+K+JN

K∏
k=1

exp
(
−(βk + r†

kΣ
−1rk)/s2

k

)
(s2

k )qk+JN+1
, (5.101)

where p(r1, . . . , rK |Σ, s) = ∏K
k=1 p(rk|Σ, s2

k ) with rk|Σ, s2
k ∼ CN (0, s2

kΣ). Taking the deriva-
tive of (5.100) with respect to Σ and equating to zero, the so-called marginal MAP estimate
of Σ is given by the fixed-point iteration

(μ + K + JN)Σ = (μ − JN)Σ̄ +
K∑

k=1

(qk + JN)rkr†
k

βk + r†
kΣ

−1rk

, (5.102)

which can be solved iteratively.
Alternatively, one can jointly maximize the posterior distribution p(Σ, s2

1, . . . , s2
K |r1, . . . , rK )

of (5.101) first over s2
k and then Σ. The joint MAP estimate of Σ is given as follows

(μ + K + JN)Σ = (μ − JN)Σ̄ +
K∑

k=1

(qk + JN + 1)rkr†
k

βk + r†
kΣ

−1rk

. (5.103)

Finally, one can also consider the MMSE estimate of Σ, which is given by the posterior
mean, i.e.,

Σ̂MMSE = E{Σ|r1, . . . , rK } =
∫

Σp(Σ|r1, . . . , rK )dΣ, (5.104)

which can be numerically computed with the Gibbs sampling since the MMSE cannot be
derived analytically. The Gibbs sampling takes a two-step loop:

• At the i-th iteration, one numerically generates samples of the texture components si accord-
ing to the distribution p(s2

k |Σi−1, rk)

s2
k |Σi−1, rk ∼ IG(qk + JN , βk + r†

k(Σi−1)−1rk), (5.105)

with Σi−1 denoting Σ from the (i − 1)-th iteration. (5.105) holds since

p(s2
k |Σi−1, rk) ∝ p(rk|Σi, s2

k )p(s2
k )

=
exp

(
−(βk + r†

kΣ
−1rk)/s2

k

)
(s2

k )qk+JN+1
(5.106)

with p(s2
k ) given by (5.40).
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• With the new samples of si, then generate numerical samples of Σi according to the prob-
ability p(Σ|{si, r1, . . . , rK ) which is given by

Σ|si, r1, . . . , rK ∼ CW−1

(
(μ − JN)Σ̄ +

K∑
k=1

r†
krk/{s2

k}i, μ + K

)
, (5.107)

since, similar to (5.101),

p(Σ|s, r1, . . . , rK ) ∝p(s, r1, . . . , rK |Σ, s)p(s)

∝
exp

(
− Tr

{
Σ−1

[
(μ − JN)Σ̄ +

K∑
k=1

rkr†
k/s2

k

]})
det(Σ)μ+K+JN

. (5.108)
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CHAPTER 6

Adaptive Radar Detection for
Sample-Starved Gaussian Training
Conditions∗
Yuri I. Abramovich1 and Ben A. Johnson1

6.1 Introduction
The problem of radar target detection in the background interference (plus noise) environment is
the central problem in statistical radar theory. As a result, there are a number of well-established
optimal (in the Neyman–Pearson sense) solutions for Gaussian signals and interference models
with known interference covariance matrices, as presented in the first two chapters of this book.

The problem of adaptive detection arises when the covariance matrix of the background
interference (plus noise) signal environment is not known a priori and instead may be repre-
sented by a certain amount of observed (secondary training) background signal data. In this
case, the key issue in adaptive detector design is to specify the best way of using this secondary
training data, along with the primary data that is tested for presence of a target. This design
problem is twofold:

• Estimate the unknown interference (plus noise) covariance matrix.
• Use this estimate for decision making regarding the presence of a target.

Despite the key importance of this very generic problem, and the significant attention it has
attracted in the last four decades, a solution that can be proved optimal in the Neyman–Pearson
sense over the wide range of possible environments has not been derived.

1Institute for Telecommunications Research, University of South Australia, Mawson Lakes, SA, Australia

∗This chapter is partially based on “Modified GLRT and AMF Framework for Adaptive Detectors” by Y. I. Abramovich,
N. K. Spencer, and A. Y. Gorokhov [1], “Sample-Deficient Adaptive Detection: Adaptive Scalar Thresholding versus
CFAR Detector Performance” by Y. I. Abramovich, B.A. Johnson, and N. K. Spencer [2], as well as “Band-Inverse
TVAR Covariance Matrix Estimation for Adaptive Detection” by Y. I. Abramovich, N.K. Spencer, and B. A. Johnson
[3], all of which appeared in IEEE Transactions on Aerospace and Electronic Systems © 2007 / 2010 IEEE.
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For this reason, the development of adaptive detectors has progressed in two major direc-
tions. The first direction is where the detector processing operations remain the same as they
would have been for an optimal Neyman–Pearson detector for a known covariance matrix,
but using an estimate for the unknown covariance matrix derived in some manner from the
secondary training data. In most cases, the maximum likelihood (ML) criterion is used for that
estimation. But, despite the well-known asymptotic efficiency of these ML estimates, it is still
impossible to prove optimality (in a Neyman–Pearson sense) for adaptive detectors that use
such ML covariance matrix estimates. In fact, it has been demonstrated that other estimates,
including those that broadly belong to a class of estimates referred to as shrinkage estimates,
provide better detection performance than ML-based ones.

Therefore, a second approach has been actively pursued, established by the pioneering
Kelly paper [4], where the Neyman–Pearson criterion is replaced by a different one that is
sufficiently close. Specifically, the detection problem is formulated as a binary test regarding
the total dataset consisting of both secondary training samples and a single primary sample,
allowing for the covariance matrix of interference to be different under the two competing
hypotheses. Under some additional assumptions and restrictions, this approach allows for
derivation of an optimal detector using the totality of the secondary and primary data, without
assigning different functions to those two sets of data. This means that the estimate of the
covariance matrix is defined by the detection test itself, and not by some “separate” (say ML)
estimation criterion. In most cases (including the work by Kelly), a generalized likelihood
ratio test (GLRT) supplants the adaptive Neyman–Pearson criterion solution with unknown
parameters replaced by their ML estimates drawn from the secondary training data. Such
detectors, as demonstrated in Chapter 2, have both good detection performance and a number
of other attractive properties, discussed later in this chapter.

Yet direct comparison of the Kelly GLRT detector with one derived using the ML covari-
ance matrix estimate (i.e. the adaptive matched filter (AMF) of Robey, Fuhrmann, Kelly, and
Nitzberg (RFKN) in Reference 5) shows that neither can be considered strictly optimal in the
Neyman–Pearson sense. Therefore, despite the theoretical attractiveness of the Kelly GLRT
detector, the problem of the “best” adaptive detector is still under intensive exploration. In this
chapter, some results of relatively recent developments (from 2007 to 2010) are introduced
that specifically address the problem of adaptive detection in Gaussian signal and interference
environments for which the secondary data volume is not large (i.e. the sample-starved condi-
tion). The term sample-starved is meant to generically cover conditions where the number N of
independent identically distributed (i.i.d.) training samples for M-variate data (an M-element
antenna array, for example) are comparable with the dimension M of the data. When N < kM
and k is a small multiple (say less than 2–4), one can treat the training conditions as sample-
starved, mainly because in this pre-asymptotic domain, one cannot rely upon the asymptotic
properties of the ML covariance matrix estimator. Nor, for the same reasons, is optimality in
the Neyman–Pearson sense for GLRT detectors considered in these sample-starved conditions,
since that also relies upon asymptotic ML principles.

Correspondingly, in Section 6.2, we discuss the distinctions between adaptive detection
and adaptive beamforming and then specify assumptions and statistical properties for these
two quite different (but often confused) applications of adaptive signal processing. The sec-
tion details the advantages and deficiencies of the existing adaptive detection techniques,
and in particular discusses the role of the GLRT/ML criterion and the role of the constant
false-alarm rate (CFAR) property. Based on the well-established fact that in many practical
applications of adaptive filtering, diagonally loaded covariance matrix estimates result in much
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better performance, we propose a modified framework for GLRT and AMF adaptive detec-
tors. In essence, we show that regularized (loaded) covariance matrix estimates adopted within
these techniques, rather than being driven to zero as suggested by ML considerations, result in
a likelihood ratio which is statistically indistinguishable from the likelihood ratio produced by
the true (albeit unknown) covariance matrix. This particular way of regularization (shrinkage)
we call “expected likelihood” (EL), and in Section 6.2, it is shown to have superior detection
performance for the GLRT and AMF variants derived over the standard algorithms for a class
of important interference (plus noise) scenarios, yet retain an invariance property which is
practically CFAR. Specifically, while the strict CFAR property for an arbitrary interference
(plus noise) scenario cannot be guaranteed, actual deviation from the nominal false-alarm rate
is small and quite acceptable. Furthermore, the EL technique results in a specific analytic level
of suggested diagonal loading, rather than be set in an ad hoc manner.

The diagonal loading considered in Section 6.2, while widely used, is just one possible
regularization (shrinkage) of the covariance matrix estimate. It is appropriate for scenarios
with signal-subspace eigenvalues that are well separated from the minimal eigenvalues in the
noise subspace. A typical example of such a scenario is a limited number of strong point-source
interferers impinging upon the antenna array from the far-field. But in many radar applications
that deal with target detection in clutter, the interference eigenvalues gradually decrease, rather
than exhibiting a “cliff” structure. Even if the dynamic range between the maximum and
minimum eigenvalues is quite high, the number of “significant” eigenvalues can be quite
large. This makes the number of training samples needed for covariance matrix estimation
also quite high, even with diagonal loading. An alternative approach in such circumstances is
to find a parametric model with a small number of parameters that can describe the covariance
matrix with a sufficient fidelity. Such regularization is often referred to as “shrinkage to a
structure,” as discussed in Chapter 3 of this book and Reference 6. In Section 6.3, we introduce
an adaptive beamforming and adaptive detection methodology that exploits a time-varying
autoregressive model with order m (TVAR(m)) that requires only a 2m + 1-wide central band
in the inverse of the estimated covariance matrix that is non-zero. While the autoregressive
model (AR(m)) also belongs to this class, it is considerably more restrictive. Indeed, in an
AR(m) model with m = M − 1, we get an arbitrary positive definite Toeplitz covariance
matrix, while in the TVAR(m) case, we get an arbitrary p.d. Hermitian matrix, which allows
for modeling of a wider range of interference scenarios and array structures. This model is
specified by a number of (m + 1)-variate (sample) covariance matrices, and therefore the
minimal number of K-variate i.i.d. training samples required for this approach is equal to
(m + 1), the same number as requires for m point-source interferers in noise, but with much
different eigenspectra. In Section 6.3, we demonstrate that once again, the EL approach can be
used to select the order m of the TVAR(m) model to make the covariance matrix “as likely” as
the true (actual) covariance matrix, and that this model order leads to enhanced performance in
a number of important “clutter-limited” scenarios. These two regularization schemes (loading
and TVAR(m) modeling) are not exhaustive by any means – available a priori information about
the covariance matrix structure can also be exploited to achieve better estimation accuracy and
ultimately better detection performance.

For both of these regularization approaches, proper optimization using EL leads to detectors
that are “practically” CFAR under certain conditions, though the very elegant property of the
GLRT and AMF detectors that adopt the unrestricted ML (sample) covariance matrix estimate
disappears. This CFAR property, whereby the output signal under hypothesis H0 (no target)
has a probability density function (pdf) which does not depend on the actual covariance matrix
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and therefore can be precalculated, is so attractive that it has become a defacto prerequisite
for design of adaptive detectors in many studies. But, as discussed later in this chapter, this
approach is not practical in many circumstances. For example, when the adaptive beamformer
training is performed using data that contain a co-channel interference and adaptive detection is
performed downstream after coherent integration and clutter mitigation, the training data used
for the adaptive beamformer have completely different statistical properties than the clutter and
noise residuals at the output of the coherent processing. Moreover, in realistic environments,
the statistical description of the actual radar signal within the tails of the pdf that is responsible
for false alarms is rarely accurately described by theoretical pdfs. So while CFAR properties are
theoretically attractive, detectors possessing CFAR frameworks are rarely sufficiently reliable
for practical applications without some augmentation via adaptive threshold determination
(see Chapters 3 and 4).

This circumstance generates an interesting question. With a finite number of i.i.d. training
samples N , is better to use all N samples in a strictly CFAR GLRT or AMF detector, or as an
alternative, use N1 training samples for highly efficient regularized or structured covariance
matrix estimates and the remaining N2 training samples for an estimate of the power at the output
of the adaptive system (beamformer) for false-alarm threshold control? It is the question that is
captured in the final section of this chapter and is a natural extension of the work presented in
Sections 6.2 and 6.3. We demonstrate that in practically important scenarios, the “two-stage”
adaptive detection approach can outperform the “one-stage” strictly CFAR GLRT or AMF
detector.

Overall, this chapter presents an alternative adaptive detector framework that heavily relies
on more efficient covariance matrix estimates in the sample-deficient environment, using the
EL principle to help select those regularization parameters. The detectors are then combined
within a two-stage approach to allow the use of highly effective but non-CFAR designs, and
under these sample-starved conditions, the resultant detectors exhibit superior behavior to the
classical detectors designed using asymptotically efficient ML-based techniques.

6.2 Improving Adaptive Detection Using
EL-Selected Loading

Techniques for adaptive signal processing for radar target detection in an unknown interference
environment stem from the pioneering work of Reed, Mallet, and Brennan (RMB) [7], followed
by Kelly’s seminal paper [4], and nowadays embrace various scenarios (as already discussed in
Chapters 2–4) with both Gaussian and non-Gaussian (spherically invariant) interference (see
Chapters 7–9 of this book, as well as References 8–10). Depending on the practical application,
two rather different formulations are considered for the adaptive detection problem.

6.2.1 Single Adaptive Filter Formed with Secondary Data,
Followed by Adaptive Thresholding Using Primary Data

The first formulation, addressed in RMB [7], is considered when the secondary (training) data
are used to design the adaptive filter that is then used to process the entire set of primary data
(range cells, say). For example, in adaptive antenna external-noise suppression applications, a
limited number of range cells (or even an “inter-dwell gap” that is free of clutter and targets)
is typically used to estimate the external-noise covariance matrix and design the adaptive
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antenna. Since the external noise is supposed to be homogeneous over the set of range cells,
this adaptive antenna weight vector is then used to process all operational range cells that
usually contain clutter and possible targets. Final target detection is performed downstream
after clutter suppression (moving-target indicator (MTI) or Doppler filtering) and non-coherent
integration. Adaptive threshold calculation is done at the output of this signal processing chain
using primary range cells. This (adaptive) detection threshold is therefore calculated for this
specific (adaptive) antenna weight vector; for Gaussian primary data, the antenna output is
also Gaussian with, possibly, unknown output noise power. For this (conditional) Gaussian
model, a typical way to calculate adaptive thresholds was introduced by Finn and Johnson
[11]. In such schemes, detection performance degradations with respect to the clairvoyant
(exact) detector are due to two statistically independent factors. One factor is associated with
the adaptive threshold calculations (using primary data), while the other is associated with the
signal-to-noise ratio (SNR) degradation in the adaptive antenna (using the secondary data).
Therefore, for such applications, analysis of the SNR pdf at the output of the adaptive antenna
gives a complete description of the adaptive antenna (filter) design performance. Specifically,
receiver operating characteristics (ROCs), derived for example in Finn and Johnson’s paper
[11] for a particular adaptive threshold design and a (fluctuating) target with a certain SNR,
must now be additionally averaged over the SNR pdf for the given adaptive antenna algorithm.
In RMB [7], this pdf for the normalized antenna output SNR was accurately calculated for
the case when the unconditional ML covariance matrix estimate (sample covariance matrix) is
used for adaptive antenna filter design, drawn from the training (secondary) data. This famous
β-distribution has an extremely important invariance property with respect to the observed
scenario, namely, it is fully specified by only two parameters: the training sample size (N) and
the adaptive antenna (filter) dimension (M). The sample-support requirement

N � 2M (6.1)

that ensures approximately 3-dB average SNR losses compared with the clairvoyant solution
has become the most quoted requirement in studies on adaptive antenna filters.

Subsequently, in the early 1980s, considerable research was focused on a specific class of
interferences whose covariance matrix has a distinct difference between the magnitude of the
m (<M) signal-subspace eigenvalues and the n ≡ M − m noise-subspace eigenvalues. The
prototypical model that results in this covariance matrix structure is a mixture of m powerful
external-noise point sources with (internal) white noise. The minimum eigenvalue here is equal
to the noise power, while the sum of the signal eigenvalues is almost equal to the overall power
of the external interferences.

Interference-to-noise ratio (INR) values of 20–40 dB are not uncommon for practical adap-
tive antenna applications. In fact, adaptive filter (antenna) design is efficient only for scenarios
with a significant ratio of maximum to minimum eigenvalue (λ1/λM ). Indeed, if s is the M-
variate normalized useful signal (target) array-signal (steering) vector, and R0 is the M-variate
interference covariance matrix, then the clairvoyant optimum filter

wopt ≡ R−1
0 s, s†s = 1 (6.2)

has an SNR improvement over the “white-noise optimum” non-adaptive beamformer wwn ≡
s of

η ≡ (s†R−1
0 s)(s†R0s). (6.3)
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According to the so-called Kantorovich inequality [12]

(s†R−1
0 s)(s†R0s) ≤ (λ1 + λM )2

4λ1λM
if s†s = 1. (6.4)

Even an improvement of, say, η = 10 means that λ1/λM � 40 for the interference covariance
matrix R0.

Of course, the clairvoyant covariance matrix R0 is unknown and must be estimated for
practical adaptive detectors. The ML estimate given secondary training data is the sample
covariance matrix

R̂ = 1

N
XN X†

N (6.5)

where XN ≡ [x1, . . . , xN ] ∈ CM×N ∼ CN N(0, R0) is the N-sample secondary (training) data
with i.i.d. samples xj (j = 1, . . . , N) described by the M-variate complex (circular) Gaussian
distribution with covariance matrix R0. As per the formulation used in RMB, this sample
covariance matrix can be directly substituted into (6.2.1) to form a practical adaptive filter,
with the performance detailed in [7].

For the subclass of strong point-source interferences, whose eigenvalues (sorted in descend-
ing order) are such that

λ1 > · · · > λm � λm+1 = · · · λM , (6.6)

it is known that augmenting the sample covariance matrix with additive white (diagonal) noise
which exceeds the minimum sample eigenvalue (a.k.a. diagonal loading) prior to substitution
into (6.2) leads to a quite dramatic SNR improvement over the unloaded ML covariance matrix
estimate and subsequent inversion (sample matrix inversion or SMI) considered by RMB [7].
This improvement was described in References 13 and 14, where it was shown that for these
scenarios the normalized output SNR does not depend on the loading factor, provided it is
chosen to be within a certain range. The SNR loss factor, that in RMB was a function of M
and N only, was then specified by m and N , irrespective of M.

Specifically, the RMB requirement (6.1) for the diagonally loaded SMI (LSMI) algorithm
was supplanted by the condition

N � 2m (6.7)

which means a significant performance improvement for scenarios with m 	 M. Since the
early 1980s, the properties of the LSMI algorithm have been widely explored and validated
in practice for various radar and sonar applications [15, 16]. It is known that diagonal loading
offers many other important features that make adaptive antennas robust against numerous
inaccuracies in the scenario model [17–19].

6.2.2 Different Adaptive Process per Test Cell with Combined
Adaptive Filtering and Detection Using Secondary Data

As outlined in Section 6.1, the superior SNR performance of LSMI over the ML-based RMB
SMI technique raises concerns about the optimality of the ML criterion for covariance matrix
estimation in adaptive antenna/filter design. Nevertheless, the same ML principle was exploited
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by Kelly [4], and subsequently by RFKN [5], when the significantly different problem of
adaptive detection was addressed. This is the second formulation we consider for the adaptive
detection problem. This problem is formulated as a hypothesis test, where a decision regarding
the presence or absence of a target in a single primary datum (one range cell, say) is made based
only on this datum and the auxiliary training (secondary) data. In essence, the training data
here must be used to provide all missing information required for decision making, including
adaptive antenna/filter design and adaptive thresholding. Since the same training data are used
for these two purposes, adaptive antenna SNR losses (as in RMB, for example) and adaptive
threshold losses (as in Finn) cannot be treated as independent random values, and specific
analysis of adaptive detection ROCs is required. This was performed by Kelly [4] for the
GLRT detector and by RFKN [5] for the “CFAR AMF” detector. Indeed, when the pdf of the
scenario-free output statistics is known, detection can be completed without adaptive threshold
calculations (over a set of homogeneous range cells).

Both Kelly’s GLRT detector and the CFAR AMF detector [5] that use the ML covariance
matrix estimate enjoy this important invariance property. Due to its importance, the invariance
(for at least CFAR) property became a frequent prerequisite for adaptive detector design in the
modern adaptive detector developments such as those of Scharf et al. [20–22]. Nevertheless,
for some models invariant solutions may not exist (e.g. adaptive detection for different INRs in
primary and secondary data [23]), or come at an excessive performance cost. It is important to
emphasize that when (as is very often the case) this invariance cannot be assured, single CFAR
primary data detection based on secondary data is still technically impossible. However in
practice, a number of homogeneous ranges cells (even processed by different but statistically
identical filters) can often be specified and again used for adaptive threshold calculations.
Naturally, the additional losses of this method must be taken into consideration.

6.2.2.1 Differences between AMF and GLRT detectors
Various modifications of the adaptive detection problem have been considered since Kelly’s
paper [8–10, 24–26]. However, there is frequently confusion of these two quite different prob-
lems: adaptive filtering (the same filter for all primary data) and adaptive detection (a different
filter for each primary datum). In Reference 27, Lekhovytskiy demonstrates that the applica-
tion of non-normalized adaptive filters (in fact, randomly normalized) Wj = R̂

−1
j s (6.5) with

independent R̂j for each cell leads to a dramatic degradation in detection performance. Indeed,
a single threshold for the various R̂j has to account for significant output power fluctuations
that are due to variations in the norm of the adaptive filter. Clearly, this problem does not exist
for single adaptive antenna applications. Confusion also occurs when the famous RMB 3-dB
SNR average loss factor for N � 2M with the ML covariance matrix estimate is compared
with, say, the 6-dB SNR degradation in ROC of the CFAR AMF detector that uses the same
estimate [5].

In this section, the adaptive detection problem is considered in Kelly’s context where each
range cell is processed by an individually tailored filter, and the (unconditional) output statistics
are averaged over a (random) set of adaptive solutions. The goal is two-fold. First, based on
the well-known superior properties of the LSMI algorithm for adaptive filter performance,
we want to investigate the performance of LSMI or loaded AMF (LAMF) adaptive detectors.
We hope and expect that the superiority of LSMI adaptive filters will lead to a superiority
of LAMF adaptive detectors for the class of interference scenarios (6.6), an expectation that
turns out to be true. The other properties of LAMF detectors (such as CFAR) also need to be
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specified. Second, this superiority of LAMF over ML-based AMF means that the theoretical
framework for adaptive detection (GLRT and AMF) needs to be modified so as to include
LAMF detectors. Specifically, we expect that a modified framework would either directly
lead to LAMF detectors with some theoretically specified loading factor or produce different
adaptive detectors whose performance is at least as good as the LAMF performance for the
class of interference scenarios (6.6).

In accordance with most works on adaptive detection [4,7], it is assumed that the train-
ing data contains only interference that is statistically mostly or completely the same as the
interference within the primary data. In what follows, we consider the cases where the interfer-
ences are exactly the same (homogeneous), or just have a different power (non-homogeneous).
This model comprises “supervised training conditions” since the secondary data do not con-
tain targets nor other interference sources. The selection of such a homogeneous training
dataset (via inhomogeneity detection) is an important research topic in adaptive radar studies
[28–32]. However, here we reconsider the traditional GLRT and AMF solutions under their
original assumptions. Recall that the AMF detector in RFKN [5] is derived as a GLRT where
the covariance matrix is known. After the test statistics are derived, the ML estimate of the
covariance matrix based on the secondary data is substituted for the known covariance matrix.
Kelly’s GLRT method is to treat the primary and secondary data as a single dataset, then for
both of the hypotheses regarding the presence or absence of a target signal, ML estimates of
all parameters (including the interference covariance matrix) are used to construct the decision
rule. Therefore, both the AMF and the Kelly GLRT techniques heavily rely on the same ML
principle for interference parameter estimation.

In this regard, it is quite instructive to recall the discussion in RFKN [5] comparing the
performance of AMF and GLRT detectors. The AMF detection rule was considered to be infe-
rior to GLRT simply because “the AMF test makes no use of the primary vector to estimate
the covariance, therefore poorer detection performance might be expected” compared with the
GLRT that “uses all the data (primary and secondary) in the likelihood optimization under
each hypothesis.” This argument could have been easily justified by comparing the detection
performance of Kelly’s GLRT technique with N secondary samples against the AMF per-
formance with just (N + 1) secondary samples. If those expectations were correct, then the
(N + 1)-variate AMF should always outperform the N-variate Kelly GLRT. But that is not
the case. Specifically, Kelly’s GLRT is effectively based on two ML interference covariance
matrix estimates constructed for the hypotheses H0 and H1 [4]. Thus for H0,

const R̂|H0 = XN X†
N + YY† (6.8)

where XN ≡ [x1, . . . , xN ] ∈ CM×N ∼ CN N (0, R0) are the N-sample secondary (training) data
with i.i.d. samples xj ( j = 1, . . . , N) described by the M-variate complex (circular) Gaussian
distribution with covariance matrix R0. For H1,

const R̂|H1 = XN X†
N +

[
IM − ss†(XN X†

N )−1

s†(XN X†
N )−1s

]
YY†

[
IM − (XN X†

N )−1ss†

s†(XN X†
N )−1s

]
. (6.9)

The primary sample is

Y =
{

X0 ∼ CN (0, R0) for H0

X0 + as for H1
(6.10)



6.2 • Improving Adaptive Detection Using EL-Selected Loading 173

where s ∈ CM×1 is the target wavefront vector, and a is the unknown (complex) target ampli-
tude. One can see that for H1, the primary sample Y contribution to the covariance matrix
estimate in (6.9) does not retain any interference component that corresponds to the target
signal wavefront. Instead, this component is rejected by the projection matrix[

IM − ss†(XN X†
N )−1

s†(XN X†
N )−1s

]
(6.11)

along with the possible target signal. Since only this component is essential for target detection,
the primary sample-produced covariance matrix update in (6.9) with this component canceled
out is non-sensical. As a result, in some situations GLRT was found to be superior to AMF, and
inferior to others. In RFKN [5], the authors rightly conceded that “the generalized likelihood-
ratio test is not optimal in the Neyman–Pearson sense as the AMF test has a probability of
detection that is higher than that of the GLRT for some situations.” For the same reason, AMF
is not optimal either. As we will show, with LAMF and its non-ML covariance matrix estimate
also outperforming AMF and GLRT in some circumstances (such as (6.6)), it becomes clear
that the ML estimation principle is not a guarantee of optimality and needs to be re-examined.

Diagonal loading (as well as the fast ML (FML) technique [32]) is quite different from
the numerous methods that assume a restricted class of admissible covariance matrices, but
still use the ML criterion. Of course, if properly adopted, any valid a priori information on
the interference properties that somehow restricts the (ML) search should lead to improved
adaptive detection performance, though the CFAR property may not be so easy to maintain.
As discussed in Section 6.1, a typical example of “shrinkage to a structure” to exploit a priori
is restricting to the class of Toeplitz covariance matrices for uniform antenna arrays (or pulse
trains). In fact, it is straight-forward to demonstrate that the ML optimization restricted to the
set of diagonally loaded or finite-subspace (FML) covariance matrices results in zero loading
and maximal signal subspace, which drives the optimum solution to the same unconstrained
(ML) sample covariance matrix estimate with ML. Therefore, loaded and FML techniques are
inherently antithetical to the ML approach.

This leads us to the important question as to whether the ML principle within the GLRT
and AMF framework can be replaced by another general principle that will generate adaptive
detectors such as LAMF or that are at least not inferior to (say) LAMF for some scenarios.
While these considerations stem mostly from the known discrepancy between SMI and LSMI
performance, there are also important theoretical considerations that raise concerns regarding
the ML criterion for small sample sizes (which are typical in radar applications). This leads us
to a framework we refer to as “EL” [33,34]

6.2.2.2 EL Framework
Let us consider the traditional likelihood function (LF) for the covariance matrix given N > M
i.i.d. training samples XN as in (6.8) [35]

f (R|XN ) = const

det(R)N
exp
[
−Tr

(
R−1XN X†

N

)]
, (6.12)

then with probability one:

det(XN X†
N ) 
= 0 (6.13)
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and so the likelihood ratio [36]

LR(R, XN ) ≡
[
f (R|XN ) det(XN X†

N )
] 1

N = det(R−1R̂) exp (M)

exp
[
Tr(R−1R̂N )

] (6.14)

where R̂ (the sample covariance matrix (6.5)) can also be treated as the likelihood function with
respect to R (e.g. [35]). One can see that the (unconstrained) ML solution RML = R̂ derived
by Anderson [37] via direct maximization of the LF f (R|XN ) yields the ultimate value for the
likelihood ratio of unity:

max
R

LR(R, XN ) = LR(R̂, XN ) = 1 (6.15)

irrespective of the sample support N and filter dimension M.
At the same time, for the true (exact, and in general unknown) covariance matrix R0, the

pdf of the likelihood ratio

LR(R0, XN ) = det
(
R

− 1
2

0 R̂R
− 1

2
0

)
exp (M)

exp
[
Tr(R

− 1
2

0 R̂R
− 1

2
0 )
] (6.16)

does not depend on R, since

Ĉ ≡ R
− 1

2
0 R̂R

− 1
2

0 ∼ CW(N , M, IM ) (6.17)

where Ĉ is the “white-noise” sample matrix with complex Wishart distribution, is (for N > M)
specified by two parameters only, namely N and M. Later we shall introduce moments and
series representations for the pdf of this ratio derived for the complex-valued case similar to
the real-valued case in Reference 38.

With the pdf of LR(R0, XN ) determined, either analytically or via Monte-Carlo simulations,
any appropriate quantile can now be chosen for use in an EL framework. If the likelihood of any
given covariance matrix estimate exceeds the chosen threshold (which statistically represents
the likelihood associated with the true (unknown) parameters), then the covariance matrix
estimate is considered acceptable. See an example LR pdf in Figure 6.1, shown for the values
M = 12 and N = 24.

Note that according to RMB [7], the average SNR degradation for SMI is about 3 dB here,
which is often considered acceptable in practical applications. Based on the pdf in Figure 6.1,
it seems natural to replace the ML estimate by one that generates likelihoods consistent with
what is expected for the true covariance matrix. This “EL” estimation approach, unlike the ML
criterion, can be shown to inherently justify the appropriate selection of parameters (such as
loading factor and interference signal-subspace dimension) based on direct likelihood match-
ing, rather than on “external considerations” as suggested in References 15 and 16. Moreover,
we shall demonstrate that this EL principle, when incorporated into the GLRT and AMF frame-
work, leads to detection rules that outperform standard GLRT and AMF in some scenarios and
are similar to LAMF with its data-independent loading-factor selection.

The issue of ML estimation within the GLRT approach is not the only one that raises
concerns within Kelly’s “single data” GLRT method. Indeed, Kelly’s approach whereby “the
decision rule will be formulated in terms of the totality of input data without the a priori
assignment of different functions to the primary and secondary input” [4] is not self-evident.
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Figure 6.1 Sample pdfs for the general test, based on a 12-element array with 24 training snap-
shots. Note the huge distinction between the LR(R0, XN ) values generated by the true
covariance matrix R0 and the ultimate likelihood value of unity produced by the ML
estimate RML = R̂. Indeed, the median LR is only 0.0257, and with probability 99.99%
the LR is less than 0.1051.

It is difficult to accept two different covariance matrix estimates for the same interference,
depending on the hypothesis for a single primary snapshot. It is expected that the proper
methodology would search for the single interference covariance matrix that is most supportive
to the detection problem, possibly dependent on the primary snapshot, but not on the hypothesis.
This methodology should suggest both the primary and the secondary data processing governed
by the detection hypothesis testing criteria on the primary data, with the a priori classification
of the secondary data as target-free being respected. The latter means that modification of
the GLRT methodology should consider two sets instead of a single-set approach using “the
totality of the input data,” and for the above reasons use EL rather than ML estimation. This
new GLRT framework should deliver adaptive detectors that are at least as efficient as LAMF,
even for the scenarios that are most favorable to LAMF (6.6). Finally, it is intuitive that if the
different adaptive techniques have the same performance, the potential accuracy set by the
problem formulation is approached, and the simplest technique can be favored for practical
reasons.

According to the conventional single-set GLRT criterion, the decision H1 that a target is
present in a (single) snapshot Y (or absent H0) is taken according to the rule

�∗(Y) =
max
μ∈�1

f (Y|μ1, H1)

max
χ∈�0

f (Y|χ1, H0)

H1
>
<
H0

h∗ (6.18)

where f (Y|μ1, H1) are the (primary) data Y pdf for hypothesis H1 (target signal present), and
μ ∈ �1 is the set of unknown (non-random) parameters that completely specify this pdf. In
most cases, random parameters with an unknown (or not accurately known) marginal pdf are
treated as μ ∈ �1. Similarly, f (Y|χ1, H0) are the (primary) data pdf for hypotheses H0 (target
signal absent) specified by the parameters χ1 ∈ �0. The threshold h∗ is defined as∫

�∗(Y)>h∗
f (Y|χ1, H0) dY ≤ PFA ∀χ ∈ �0 (6.19)

where PFA is the desired probability of false alarm.
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Note that for a finite-dimensional dataset Y , the GLRT criterion does not have a rigorous
theoretical justification, similar to the Bayesian rule with given marginal pdfs fμ(μ) and fχ(χ),
for example. Only asymptotic considerations (N → ∞) are used to justify the GLRT method,
despite its obvious intuitive appeal. In practice, this means that estimates other than the ML
ones for μ and χ in (6.18) could be employed and could result in better detection performance
for finite N . This avenue should be explored whenever alternative estimates are available,
especially for covariance matrix estimation.

To fit into this single-set GLRT framework, Kelly [4] considered a single total dataset
{XN ; Y} and introduced χ = R and μ = (R, a) with the two different solutions (6.8) and (6.9) for
the interference covariance matrix. In our two-set GLRT (2S-GLRT) framework, we introduce

f (XN |η, χ12) η ∈ �2 (6.20)

f (Y|χ0, χ12; H0) χ0 ∈ �0 (6.21)

f (Y|μ, χ12; H1) μ ∈ �1 (6.22)

where χ12 ∈ �12, and �12 is the set of common (interference) parameters that describe the
pdf for both the primary data Y and the secondary set XN , and η, χ0, and μ are now parameters
specific to each set and hypothesis.

The a priori classification of the training (secondary) data XN and the primary snapshot
Y means that the estimates χ12 do not depend on the hypothesis H0 versus H1, and so is the
same as appears in (6.21) and (6.22). Therefore, the following option can be considered:

GLRT: �12 = max
η,χ12

f (XN |η, χ12)
max
μ∈�1

f (Y|μ, χ12; H1)

max
χ0∈�0

f (Y|χ0, χ12; H0)

H1
>
<
H0

h∗. (6.23)

Note that this joint optimization over χ12 is already different from the standard AMF approach,
namely:

AMF: �
(2)
12 =

max
μ∈�1

f (Y|μ, χ12ML; H1)

max
χ0∈�0

f (Y|χ0, χ12ML; H0)

H1
>
<
H0

h∗ (6.24)

where

χ12ML = arg max
η,χ12

f (XN |η, χ12). (6.25)

On the other hand, the joint optimization in (6.23) should result in a single solution in χ12 for
both the hypotheses H0 and H1. It is important that this solution depends on the actual primary
snapshot Y , but not on the hypothesis itself regarding this primary snapshot. Therefore, at least
in principle, the GLRT approach (6.23) differs from Kelly’s solution and the AMF technique,
even though the same ML principle is used for both GLRT (6.23) and AMF (6.24).
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However, in most of the cases considered in this section, one can replace the likelihood
function (LF) f (XN |η, χ12) by the likelihood ratio (LR)

LR(XN |χ12) = max
η

f (XN |η, χ12)

f0(XN )
∈ (0, 1] (6.26)

that has the same ML solution for χ12ML:

argχ12
max
η,χ12

f (XN |η, χ12) = arg max
χ12

LR(XN |χ12). (6.27)

The most important property of this LR is that, for the actual (true, exact) χ
(0)
12 , the pdf does

not depend on χ
(0)
12 , i.e. scenario-free, depends only on the parameters M and N , and can be

precalculated. Hence for a given probability P0, the upper and lower bounds (αU and αL,
respectively) can be found such that∫ 1

αL

w[LR(XN |χ(0)
12 )] dLR =

∫ αU

0
w[LR(XN |χ(0)

12 )] dLR = P0 = 1 − ε, (0 < ε 	 1) (6.28)

so that with the high probability (1 − 2ε), the exact parameters χ
(0)
12 generate the LR within the

specified bounds. Here w[ · ] is the scenario-free pdf for the likelihood ratio LR(XN |χ(0)
12 ).

For most cases with relatively small sample size (N � M), Figure 6.1 shows that

αU 	 1 (6.29)

and so the ML solution χ12ML is far away from the true set of parameters in terms of the LR
metric. Of course, very small LRs may be generated not only by the true parameters but by a
variety of completely erroneous solutions as well. For this reason, we use the “EL” approach
that is based on LR matching for a certain parameterization of the estimate χ̂12(β) such that

χ̂12(β0) = χ12ML (6.30)

and the parameterization corresponds to some valid a priori assumptions regarding the class
of covariance matrices.

We can now propose the following 2S-GLRT techniques:

ML-GLRT: �
(3)
12 = max

β

max
μ∈�1

f (Y|μ, χ̂12(β); H1)

max
χ0∈�0

f (Y|χ0, χ̂12(β); H0)

H1
>
<
H0

h∗ (6.31)

for β such that

αL ≤ LR(XN |β) ≤ 1 (6.32)

and

EL-GLRT: �
(4)
12 = max

β

max
μ∈�1

f (Y|μ, χ̂12(β); H1)

max
χ0∈�0

f (Y|χ0, χ̂12(β); H0)

H1
>
<
H0

h∗ (6.33)
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for β such that

αL ≤ LR(XN |β) ≤ αU . (6.34)

The only difference between these two methods is that ML-GLRT allows the likelihood
ratio LR(XN |β) generated by the parameterized estimate χ̂12(β) to arbitrarily approach the
upper bound of unity, whereas EL-GLRT restricts the LR to the range of values where the
exact parameters are concentrated, according to (6.28).

Similarly, we can also introduce the EL-AMF detector, where we replace ML estimates by
EL ones:

EL-AMF: �
(5)
12 =

max
μ∈�1

f (Y|μ, χ̂12EL : H1)

max
χ0∈�0

f (Y|χ0, χ̂12EL : H0)

H1
>
<
H0

h∗. (6.35)

The EL estimate is the estimate that, for given training data XN , generates the specific
precalculated likelihood ratio LR0, i.e.

LR[XN |χ̂12(βEL)] = LR0. (6.36)

This value LR0 is chosen by referring to the scenario-free pdf LR(XN |χ(0)
12 ). For example,

the mean or median value of the pdf could be selected, or a specific quantile, depending on
the filter designer’s goals.

In the next subsection, the two-set (2S) ML-GLRT, EL-GLRT, and EL-AMF techniques
are derived for the typical Gaussian model of interference and target signal. Later the detection
performance of these techniques is compared with standard AMF and the clairvoyant case with
known interference parameters.

6.2.2.3 2S GLRT and AMF Detectors for Gaussian Models
In most GLRT studies, the target is modeled by a vector of given structure (wavefront) with
an unknown complex scaling factor that is an additional unknown deterministic parameter
(see (6.10)). In this subsection, the typical target model is adopted, namely the Swerling 1
model [39], which is the Gaussian model (Rayleigh target) with uniform initial phase and
Rayleigh-distributed envelope.

6.2.2.3.1 Homogeneous Interference Training Conditions; Fluctuating Target with
Known Power

In this case, the only information that is assumed unavailable is the interference covariance
matrix, which is identical for both the training and the primary data:

�0 = ∅, �1 = ∅, �2 = ∅, �12 = {R} (6.37)

and

f (XN ) = 1

πN det(R)N
exp
[
−Tr(R−1XN X†

N )
]

(6.38)

f (Y|H1) = 1

π det(R + σ2
s ss†)

exp
[
−Y†(R + σ2

s ss†)Y
]

(6.39)

where s is the target signal wavefront vector and σ2
s is the target power.
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Hence, according to (6.31)–(6.34), the 2S-GLRT detection problem is

�12 = max
R(β)

1

1 + σ2
s s†R−1(β)s

exp

[
σ2

s |Y†R−1(β)s|2
1 + σ2

s s†R−1(β)s

]
(6.40)

subject to

ML-GLRT: αL ≤ det(R−1(β)R̂N ) exp (M)

exp [Tr(R−1(β)R̂N )]
≤ 1 (6.41)

EL-GLRT: αL ≤ det(R−1(β)R̂N ) exp (M)

exp [Tr(R−1(β)R̂N )]
≤ αU (6.42)

where R̂N is the sample covariance matrix given by 1
N XN X†

N .
The AMF technique is based on

�12 = 1

1 + σ2
s s†R̂

−1
(β)s

exp

[
σ2

s |Y†R̂
−1

(β)s|2
1 + σ2

s s†R̂
−1

(β)s

]
(6.43)

subject to

standard ML-AMF: R̂(β = β0) = R̂N (6.44)

EL-AMF:
det(R̂

−1
(βEL)R̂N ) exp (M)

exp [Tr(R̂
−1

(βEL)R̂N )]
= LR0. (6.45)

In (6.41) and (6.42),

γ
(1)
0 ≡ LR(XN |R0) = det(N−1Ĉ) exp (M)

exp [Tr(N−1Ĉ)]
(6.46)

where Ĉ ∼ CW(N , M, IM ), is described by a scenario-free (complex Wishart) pdf. Indeed,
Appendix I of Reference 1 shows that the hth moment is given by

E

{
γ

(1)h
0

}
=
( e

N

)Mh (N + h)−M(N+h)

N−M(N+h)

M∏
j=1

(N + h + 1 − j)

M∏
j=1

(N + 1 − j)

(6.47)

= NMN eMh 1

(N + h)M(N+h)

M∏
j=1

(N + h + 1 − j)

M∏
j=1

(N + 1 − j)

. (6.48)
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The pdf for γ
(1)
0 , w(γ (1)

0 ) can be expressed as an infinite series by applying a Mellin transform,
similar to Reference 38 (see Appendix I in Reference 1). Alternatively, the pdf can be deter-
mined via Monte-Carlo simulation. Since the pdf for γ

(1)
0 , w(γ (1)

0 ) depend only on M and N ,
simulation of any scenario with the same M and N (including a noise-only one) will accurately
produce the pdf with sufficient trials. Bounds (both upper αU and lower αL) can then be deter-
mined by integrating over the pdf of w(γ (1)

0 ) dγ
(1)
0 to the desired level of fidelity with respect

to probability of false rejection and/or false acceptance of the H0 and H1 hypotheses.

6.2.2.3.2 Homogeneous Interference Training Conditions; Fluctuating Target with
Unknown Power

In this case

�0 = ∅, �1 = {σ2
s }, �2 = ∅, �12 = {R}. (6.49)

According to (6.31), first the ML estimate of the target signal power σ2
s needs to be found:

max
σ2

s

1

1 + σ2
s s†R−1(β)s

exp

[
σ2

s |Y†R−1(β)s|2
1 + σ2

s s†R−1(β)s

]
. (6.50)

Since σ2
s ≥ 0, the solution is

σ̂2
s =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|Y†R−1(β) s|2 − s†R−1(β) s

[s†R−1(β) s]2
for

|Y†R−1(β) s|2
s†R−1(β) s

≥ 1

0 for
|Y†R−1(β) s|2

s†R−1(β) s
< 1.

(6.51)

The solution σ̂2
s = 0 clearly means that there is no target signal present in the input data, hence

our 2S-GLRT test is

�12 = max
R(β)

s†R−1(β) s
|Y†R−1(β) s|2 exp

[ |Y†R−1(β) s|2
s†R−1(β) s

]
H

( |Y†R−1(β) s|2
s†R−1(β) s

− 1

) H1
>
<
H0

h∗ (6.52)

where H(x) is the unit step function

H(x) =
{

1 forx ≥ 0
0 forx < 0.

(6.53)

Observe that the function

f (x) = ex/x (6.54)

is monotonic for x ≥ 1, and so this decision rule can be replaced by the more familiar one

�12 = max
R(β)

|Y†R−1(β)s|2
s†R−1(β)s

H1
>
<
H0

h∗ > 1 (6.55)

together with the same constraints on β as in (6.41) for ML-GLRT and in (6.42) for EL-GLRT.
This maximization can be interpreted as the intuitively appealing maximization of the sample
output signal-to-interference ratio when the adaptive filter is set to ŵ(β) = R̂

−1
(β)s, and the

interference output power is calculated as ŵ†(β)R̂(β)ŵ(β).
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Yet if we relax this restriction on x > 1 and consider the unconstrained (by H(x − 1))
maximization of the �12 over R(β)

�12 = max
R(β)

1

x
ex (6.56)

with

x = |Y†R−1(β)s|2
s†R−1(β)s

≥ 0, (6.57)

this optimization may potentially lead to solutions with x → 0, which according to (6.51)
means a negative estimate of a target power and in turn, no detection. Therefore allowing for
this non-constrained optimization, the detection rule should be

�12 = |Y†R̂
−1

(β̂)s|2
s†R̂

−1
(β̂)s

H1
>
<
H0

h∗ > 1 (6.58)

where

R̂(β̂) = arg max
R(β)

s†R−1(β)s
|Y†R−1(β)s|2 exp

[ |Y†R−1(β)s|2
s†R−1(β)s

]
(6.59)

subject to the usual ML- (6.41) or EL-GLRT constraints (6.42).
Since the x-monotonic function (6.52) or (6.54) is replaced by the function (6.59) which is

not constrained by the condition x > 1, one may expect different detection performance from
the tests (6.55) and (6.58)–(6.59). Note also that the test (6.55) may have different performance
to the unconstrained test on �12 = maxR(β)

1
x ex even for the clairvoyant case R = R0.

Similarly, the AMF decision rule may be introduced

s†R̂
−1

(β)s

|Y†R̂
−1

(β)s|2
exp

[
|Y†R̂

−1
(β)s|2

s†R̂
−1

(β)s

]
H

(
|Y†R̂

−1
(β)s|2

s†R̂
−1

(β)s
− 1

) H1
>
<
H0

h∗ > 1 (6.60)

or

|Y†R̂
−1

(β̂)s|2
s†R̂

−1
(β̂)s

H1
>
<
H0

h∗ > 1. (6.61)

Here R̂(β) should be chosen either in the standard way R̂(β = β0) = R̂N to get the well-known
ML-AMF method or by (6.45) to get the EL-AMF rule.

6.2.2.3.3 Arbitrary Scaling Factors for Interference Matrices; Fluctuating Target
with Unknown Power

Here the (total) power of the interference within the training data is assumed to be different to
that in the primary data, so that the interference covariance matrix is the same up to an arbitrary
scaling factor [20].

More specifically,

E

[
XN X†

N

]
= c2NR, E

[
YY†|H0

]
= c1R. (6.62)
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�0 = {c1}, �1 = {c1, σ2
s }, �2 = {c2}, �12 = {R}. (6.63)

According to (6.26) and (6.31), one first needs to find

LR(XN |R) = max
c2

f (XN |c2)

f0(XN )
. (6.64)

Since

max
c2

1

πN cMN
2 det(R)

exp

[
− 1

c2
Tr(R−1XN X†

N )

]
(6.65)

leads to the ML estimate

ĉML = 1

M
Tr(R−1R̂N ), (6.66)

one ends up with the familiar “sphericity test” in (6.64):

LR(XN |R(β)) =
⎛⎜⎝ det(R−1(β)R̂N )[

1
M Tr(R−1(β)R̂N )

]M

⎞⎟⎠
N

. (6.67)

For the GLRT detection rule,

max
c1

f (Y|H0) = det(R−1(β))[
1
M Tr(R−1(β)R̂N )

]M (6.68)

and

max
c1,σ2

s

f (Y|H1) = max
σ2

s >0
c1>0

exp

[
−Y†R−1(β)Y + σ2

s
c1

|Y†R−1(β)s|2
1+ σ2

s
c1

s†R−1(β)s

]
det(c1R(β))

[
1 + σ2

s
c1

s†R−1(β)s
] . (6.69)

First, find σ2
sML by solving the log-likelihood equation

∂

∂σ2
s

ln f (Y|H1) = 0 (6.70)

hence

1 + σ2
s

c1
s†R−1(β)s = 1

c1

|Y†R−1(β) s|2
s†R−1(β) s

(6.71)

which leads to the estimate (cf (6.51))

σ̂2
sML = |Y†R−1(β) s|2 − c1s†R−1(β) s

[s†R−1(β) s]2
(6.72)
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for

|Y†R−1(β) s|2
s†R−1(β) s

≥ c1. (6.73)

Substituting (6.71) into (6.69) yields

max
c1,σ2

s

f (Y|H1) = s†R−1(β) s

cM−1
1 det(R(β))|Y†R−1(β)Y|2 exp

{
1

c1

[
−Y†R−1(β)Y + |Y†R−1(β) s|2

s†R−1(β) s

]}
.

(6.74)

Therefore the equation

∂

∂c1
ln[ max

σ2
s

f (Y|H1)] = 0 (6.75)

leads to the solution

ĉ1ML = 1

M − 1

[
Y†R−1(β)Y − |Y†R−1(β)s|2

s†R−1(β)s

]
. (6.76)

Schwarz’s inequality gives us ĉ1ML ≥ 0, so substituting the above into (6.73) gives

|Y†R−1(β)s|2
s†R−1(β)sY†R−1(β)Y

≥ 1

M
(6.77)

so the 2S-GLRT decision rule is

max
R(β)

H(ĉos2 − 1
M )[

1 − ĉos2]M−1
ĉos2

H1
>
<
H0

h∗ > 1 (6.78)

where

ĉos2 ≡ |Y†R−1(β)s|2
s†R−1(β)sY†R−1(β)Y

(6.79)

subject to

ML-GLRT: αL ≤ det(R−1(β)R̂N )[
1
M Tr(R−1(β)R̂N )

]M < 1 (6.80)

EL-GLRT: αL ≤ det(R−1(β)R̂N )[
1
M Tr(R−1(β)R̂N )

]M ≤ αU . (6.81)

It is straight-forward to show that the function

f (ĉos2) = 1

[1 − ĉos2]M−1ĉos2
(6.82)
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is monotonic for ĉos2 ≥ 1/M, so for the same reasons as before the 2S-GLRT decision rule
may be expressed in the traditional form

|Y†R̂
−1

(β)Y |2
s†R̂

−1
(β)sY†R̂

−1
(β)Y

H1
>
<
H0

h∗ ≥ 1

M
(6.83)

where

R̂
−1

(β) = arg max
R(β)

1

[1 − ĉos2]M−1ĉos2
(6.84)

subject to the same constraint (6.80) or (6.81).
Naturally, the optimized function (6.82) should not be used directly, in order to avoid the

inevitable performance degradation due to the non-monotonic nature of this function over the
entire interval 0 ≤ ĉos2 ≤ 1.

We may now introduce the traditional ML-AMF solution (that is the adaptive coherence
estimation [ACE] detector [10,40]) as

ĉos2
ML = |Y†R̂

−1
N s|2

s†R̂
−1
N sY†R̂

−1
N Y

H1
>
<
H0

h∗ >
1

M
(6.85)

and the EL-AMF solution as

ĉos2
ML = |Y†R̂

−1
(βEL)s|2

s†R̂
−1

(βEL)sY†R̂
−1

(βEL)Y

H1
>
<
H0

h∗ >
1

M
(6.86)

where βEL is determined by the condition

det(R̂
−1

(βEL)R̂)[
1
M Tr(R̂

−1
(βEL)R̂)

]M = LR0. (6.87)

As usual, the bounds αL, αU , and LR0 are specified by the scenario-free pdf that has been
derived in Reference 41 for γ

(2)
0 :

γ
(2)
0 = det(Ĉ)[

1
M Tr(Ĉ)

]M (6.88)

Ĉ ∼ CW(N , M, IM ) (6.89)

w
(
γ

(2)
0

) = C(M, N)
[
γ

(2)
0

]N−M
GM,0

M,M

(
γ

(2)
0

∣∣∣∣M2−1
M , M2−2

M ,..., M2−M
M

0,1,...,M−1

)
(6.90)

where

C(M, N) ≡ (2π)
M−1

2 M
1−2MN

2
(MN)∏M

j=1 (N − j + 1)
(6.91)

and GM,0
M,M ( · ) is Meijer’s G-function [42].
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Note that the above well-known models have been elucidated since they permit analytic
solutions for the ML estimates σ̂2

sML and ĉML. The same methodology can be applied for more
complex models where such estimates are found numerically [23].

6.2.2.4 Diagonally Loaded and FML Adaptive Detectors;
“Favorable” Scenarios

According to the two-fold goal of this study, the particular parametric families are now specified
for the covariance matrix estimate R(β) within the above 2S-GLRT and AMF detection rules
as the diagonally loaded and “FML” ones. Then we consider scenarios that are known to be
most favorable for LSMI and FML adaptive filter techniques. The LSMI-based LAMF detector
is also specified with a data-independent (constant) loading factor. The performance of this
conventional LAMF detector will be compared with that of the new 2S-GLRT and EL-AMF
methods that operate with adaptive data-dependent loading-factor selection.

The scenarios best addressed by LSMI treatment (6.6) are equivalently described by a
covariance matrix of the form

R0 = μUs�sU†
s + UnU†

n (6.92)

where, for simplicity, the white-noise power σ2
n is set to unity; Us is the M × m matrix of m

“signal-subspace” eigenvectors; Un is the M ×n matrix of “noise-subspace” eigenvectors, and
μ�s � Im is the m-variate matrix of “signal-subspace” eigenvalues. The conditions

m < M, μ � 1 (6.93)

(or eigm(R0) � σ2
n in the general case) are “favorable,” meaning that there is typically tens

of dBs difference between the signal- and noise-subspace eigenvalues. For this class of inter-
ference covariance matrices, it was demonstrated [13] that the adaptive filter wLSMI that arises
from the LSMI technique

wLSMI ≡ (βIM + R̂N )−1s (6.94)

where R̂N ≡ XN X†
N/N , and the loading factor β is selected within the broad range of values

μλm � β > 1 (in general, eigmR0 � β > σ2
n ) (6.95)

gives the normalized output SNR (SNR loss factor)

γLSMI = [s†(βIM + R̂N )−1s]2

s†(βIM + R̂N )−1R0(βIM + R̂N )−1ss†R−1
0 s

(6.96)

that is approximately described by the β-distribution

w(γLSMI ) = N !
(N − m)!(m − 1)! (1 − γLSMI )m−1γN−m

LSMI . (6.97)

This distribution only depends on N and m, not on the loading factor or other scenario param-
eters. Moreover,

E{γLSMI} � 3 dB for N � 2m. (6.98)
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Later in Reference 43, the same pdf was used to describe the SNR loss factor of the FML
(Hung–Turner type) adaptive beamformer

wFML ≡ (σ̂2
n IM + ÛmÂmÛ

†
m)s (6.99)

where

σ̂2
n ≡ 1

M − m

M−m∑
j=1

λm+j, Âm ≡ diag[λ̂j − σ̂2
n ] for j = 1, . . . , m (6.100)

with Uj and λj (j = 1, . . . , M) coming from the eigen-decomposition of the sample (ML)
covariance matrix

R̂N = Û�̂Û, Û ≡ [Ûm, Ûn], �̂ ≡ diag [�̂m, �̂n]. (6.101)

Note that unlike the LSMI algorithm, the FML technique requires the signal-subspace dimen-
sion (order) m to be specified. For favorable conditions (6.92)–(6.93), this order can be esti-
mated with high accuracy by treating R̂ with an information-theoretic criterion (ITC) [44].
This approach is actually similar to the EL philosophy, and Subsection 6.2.2.5 shows that in
many scenarios, EL matching gives as reliable an order estimate as any ITC. Therefore, for
the FML method there is no practical difference between EL-FML and “conventional” FML
(for (6.92)–(6.93)). For this reason, the comparative analysis is focused on the LAMF detector
with constant diagonal loading:

R̂LSMI = βcIM + R̂N . (6.102)

According to the conventional AMF methodology, the LAMF detector can be derived from
(6.102) being substituted into the detection test instead of the known covariance matrix [5].

The adaptive detectors that are to be compared for favorable scenarios are therefore as
given below.

6.2.2.4.1 Homogeneous Interference Training Conditions; Fluctuating Target with
Unknown Power

2S-GLRT:

max
β

|Y†(βIM + R̂N )−1s|2
s†(βIM + R̂N )−1s

H1
>
<
H0

h∗ > 1 (6.103)

subject to

αL ≤ det[(βIM + R̂N )−1R̂N ] exp(M)

exp Tr[(βIM + R̂N )−1R̂N ]
≤ 1 (ML-GLRT) (6.104)

or

αL ≤ det[(βIM + R̂N )−1R̂N ] exp(M)

exp Tr[(βIM + R̂N )−1R̂N ]
≤ αU (EL-GLRT) (6.105)
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ML-AMF:

|Y†R̂
−1
N s|2

s†R̂
−1
N s

H1
>
<
H0

h∗ > 1 (6.106)

EL-AMF:

|Y†(β̂IM + R̂N )−1s|2
s†(β̂IM + R̂N )−1s

H1
>
<
H0

h∗ > 1 (6.107)

where

β̂ ≡ argβ

{
det[(βIM + R̂N )−1R̂N ] exp(M)

exp Tr[(βIM + R̂N )−1R̂N ]
≡ LR0

}
(6.108)

LAMF:

|Y†(βcIM + R̂N )−1s|2
s†(βcIM + R̂N )−1s

H1
>
<
H0

h∗ > 1 (6.109)

where the constant βc is about two or three.

6.2.2.4.2 Non-homogeneous Interference Training Conditions; Fluctuating Target
with Unknown Power

2S-GLRT:

max
β

|Y†(βIM + R̂N )−1s|2
s†(βIM + R̂N )−1sY†(βIM + R̂N )−1Y

H1
>
<
H0

h∗ >
1

M
(6.110)

subject to

αL ≤ det[(βIM + R̂N )−1R̂N ]{
1
M Tr[(βIM + R̂N )−1R̂N ]

}M ≤ 1 (ML-GLRT) (6.111)

or

αL ≤ det[(βIM + R̂N )−1R̂N ]{
1
M Tr[(βIM + R̂N )−1R̂N ]

}M ≤ αU (EL-GLRT) (6.112)

ML-AMF (ACE):

|Y†R̂
−1
N s|2

s†R̂
−1
N sY†R̂

−1
N Y

H1
>
<
H0

h∗ >
1

M
(6.113)
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EL-AMF:

|Y†(β̂IM + R̂N )−1s|2
s†(β̂IM + R̂N )−1sY†(β̂IM + R̂N )−1Y

H1
>
<
H0

h∗ >
1

M
(6.114)

where

β̂ ≡ argβ

⎧⎪⎨⎪⎩ det[(βIM + R̂N )−1R̂N ]{
1
M Tr[(βIM + R̂N )−1R̂N ]

}M ≡ LR0

⎫⎪⎬⎪⎭ (6.115)

LAMF:

|Y†(βcIM + R̂N )−1s|2
s†(βcIM + R̂N )−1sY†(βcIM + R̂N )−1Y

H1
>
<
H0

h∗ >
1

M
(6.116)

where the constant βc is about two or three.

Naturally the performance of these detectors compared with the FML-based ones is of
interest. The FML-based detectors can be introduced in a similar way, where now the signal-
subspace dimension m in (6.99) is used as a parameter in 2S-GLRT optimization. As already
mentioned, EL-FML has the same performance as the FML matrix estimate using the true m
for “favorable” scenarios (6.92)–(6.93).

Note that of all these detectors, only the familiar ML-AMF (ACE) detectors and standard
GLRT are known to be strictly CFAR detectors [5,40]. Indeed, for signal-free primary data
Y and no mismatch in the interference properties between the primary and secondary data,
the above ML-AMF detectors have pdfs that are functions only of M and N . Such pdfs have
been analytically derived in References 5 and 40 and can be used for false-alarm threshold
calculations. For the other detectors introduced above, the strict CFAR property cannot be
proven. Yet, for favorable scenarios, a certain invariance of the output signal-free statistics
can be demonstrated that is sufficient for practical false-alarm threshold calculations. This
invariance is specified by the following two theorems.

Theorem 6.1. Suppose the “favorable” interference covariance matrix is of the form

R0 = μUs�sU†
s + UnU†

n , μ � 1, �s > Im (6.117)

and let the loading factor β in the LSMI estimate

R̂LSMI = βIM + R̂N , R̂N = XN X†
N/N , XN ∼ CN N (0, R0) (6.118)

be selected within the range μ > β � 1, then
(a) the test statistics

t̂1 ≡ |Y†(βIM + R̂N )−1s|2
s†(βIM + R̂N )−1s

, Y ∼ CN (0, R0) (6.119)
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can be approximately (as μ → ∞) represented as

t̂1 �
∣∣∣[y†

1n − y†
1s(ZsZ†

s )−1ZsZ†
n]Ze1

∣∣∣2
eT

1 Ze1
(6.120)

where

Z ≡
{
βIn + 1

N
Zn[IN − Z†

s (ZsZ†
s )−1Zs]Z†

n

}−1

(6.121)

and where

y1n ∈ CN n×1 ∼ CN (0, In)

y1s ∈ CN m×1 ∼ CN (0, Im)

Zn ∈ CN n×N ∼ CN N (0, In)

Zm ∈ CN m×N ∼ CN N (0, Im)
e1 ∈ Rn×1 ≡ [1, 0, . . . , 0]T

(6.122)

and y1n, y1s, Zn, Zm are mutually independent; and
(b) the test statistics

t̂2 ≡ |Y†(βIM + R̂N )−1s|2
s†(βIM + R̂N )−1sY†(βIM + R̂N )−1Y

, Y ∼ CN (0, R0) (6.123)

can be approximately (as μ → ∞) represented as

t̂2 ≡ t̂1L−1
LGIP (6.124)

where

LLGIP ≡ Y†(βIM + R̂N )−1Y

� y†
1s

[
1

N
ZsZ†

s − 1

N2
ZsZ†

n(βIN + 1

N
ZnZ†

n)−1ZnZ†
s

]−1

y1s

−2 Re
[
y†

1s(ZsZ†
s )−1ZsZ†

nZy1n

]
+ y†

1nZy1n. (6.125)

The proof appears in Appendix II of Reference 1.
Despite being rather bulky, these representations mean that for scenarios satisfying (6.92)–

(6.93) with sufficiently large μ, the test statistics for target-free primary data can be expressed
as a function of “white-noise” i.i.d. data, and so its pdf will depend only upon the parameters
N , M, m, and β. For LAMF, these representations can be used directly to calculate false-alarm
thresholds, at least, by direct Monte-Carlo simulations. Of course, in this case, the order m
must be specified, but this is not a problem for “favorable” scenarios (6.92)–(6.93) where ITC
is quite robust. With respect to these properties, the LAMF detector can be treated as being
CFAR in practice.
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The derivation above provides the most accurate representations for t̂1 and t̂2, sufficient for
threshold calculations even for reasonably small β. For large values, the expressions are less
complicated; specifically for

Nβ � 1, (6.126)

t̂1 � 1

β
|[y†

1n − y†
1s(ZsZ†

s )−1ZsZ†
n]e1|2 (6.127)

and

LLGIP � Ny†
1s(ZsZ†

s )−1y1s + y†
1ny1n/β (6.128)

and with

f̂ ≡ y†
1s(ZsZ†

s )−1y1s ∼ f̂ m−1

B(m, N + 1 − m)(1 + f̂ )N+1
(6.129)

ĝ ≡ y†
1ny1n ∼ ĝM−m+1 exp[−ĝ]

(M − m)
(6.130)

where B is the incomplete β-function. Note that the statistics LLGIP can be considered to be the
loaded version of the “generalized inner product” (GIP) test that was introduced in Reference 28
for non-homogeneity detection.

In order to expand these invariance properties to the new 2S-GLRT and EL-AMF tech-
niques, it is merely necessary to demonstrate that (under favorable interference conditions) the
LRs in (6.104) and (6.111) can be approximately represented as functions of the same ran-
dom “white-noise” variables Zs and Zn. When dealing with GLRT optimization in (6.103) and
(6.110), it is rare to get analytic expressions for the target-free thresholds. Yet, since both the
optimized test statistics and constraints can be represented by “white-noise” variables, these
pdfs can be defined by N , M, m, αL, and αU and may be precalculated using Monte-Carlo
simulations.

For EL-AMF, such LR representation means that the “EL” loading factor β is a function of
the same “white-noise” variables Zs and Zn, together with the expected median LR value LR0,
and so the target-free test statistics for EL-AMF are a function of N , M, m, and LR0 and may
again be precalculated using Monte-Carlo simulations. The invariance of the LRs is formalized
by the following theorem.

Theorem 6.2. Suppose the “favorable” interference covariance matrix is of the form

R0 = μUs�sU†
s + UnU†

n , μ � 1 (6.131)

and let the loading factor β in the LSMI estimate

R̂LSMI = βIM + R̂N , R̂N = XN X†
N/N , XN ∼ CN N (0, R0) (6.132)
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be selected within the range μ > β � 1, then the LRs

γ
(1)
�0 ≡ det(R̂

−1
LSMI R̂N ) exp(M)

exp Tr(R̂
−1
LSMI R̂N )

(6.133)

γ
(2)
�0 ≡ det(R̂

−1
LSMI R̂N )[

1
M Tr(R̂

−1
LSMI R̂N )

]M (6.134)

may be approximately represented as

γ
(1)
�0 = det[Z(Z−1 − βIN )]

exp[−β Tr(Z)]
(6.135)

γ
(1)
�0 (β = 0) = 1 (6.136)

γ
(1)
�0 (β � 1) = β−(M−m) det(Z−1 − βIN ) exp[M − m] (6.137)

and

γ
(2)
�0 = det[Z(Z−1 − βIN )][

1 − β Tr(Z/M)
]M (6.138)

γ
(2)
�0 (β = 0) = 1 (6.139)

γ
(2)
�0 (β � 1) = β−(M−m) det(Z−1 − βIN )

(
1 − m

M

)−M
. (6.140)

The proof appears in Appendix III of Reference 1.
In the next subsection, these approximations are demonstrated to be sufficiently accurate

for practical false-alarm threshold calculations for scenarios that consist of strong point-source
interferers (i.e. are favorable for these detectors).

6.2.2.5 Detection Performance Analysis of 2S-GLRT, AMF, and LAMF
Detectors

6.2.2.5.1 “Favorable” Interference Scenario
Consider an M = 12-sensor uniform linear antenna array, and m = 6 independent Gaussian
interference sources, each with 30-dB signal-to-white-noise ratio (SWNR). The interference
directions-of-arrival (DOAs) were chosen to be

w6 ≡ sin θ6 = [−0.8, −0.4, 0.2, 0.5, 0.7, 0.9] (6.141)
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Figure 6.2 Clairvoyant eigenspectrum of the “favorable” and “unfavorable” interference
covariance matrices used in the simulations. Favorable scenarios consist of strong
point-source interferers, which allow for a distinct signal and noise subspace, while
unfavorable scenarios include spread sources that preclude the presence of a distinct
noise subspace after eigen-decomposition.

so that the eigenspectrum of the interference covariance matrix

R0 = σ2
n IM +

6∑
j=1

σ2
j s(wj)s†(wj) (6.142)

where σ2
n is the white-noise power, and

σ2
n = 1, σ2

j = 1, 000, wj = 2π
d

λ
sin θj (6.143)

as shown in Figure 6.2 perfectly meets the “favorable” interference conditions (6.92)–(6.93),
since λ7/λ8 = λ7/σ

2
n � 35 dB. Note that under our assumption regarding the training data

consisting of N i.i.d. samples, the above adaptive detectors are applicable to any spatial, tem-
poral, or space–time application. In fact, the eigenspectrum in Figure 6.2 has been specifically
chosen to look like that of the terrain-scattered space–time covariance matrix in a side-looking
airborne radar with three antenna sensors and four repetition periods [45].

Two separate target DOAs w0 have been selected to represent two extreme cases, namely

s†
0[I − s6(s†

6s6)−1s†
6]s0

s†
0s0

=
{

0.949 for w†
0 = −0.60

0.040 for wL
0 = 0.18.

(6.144)

In the first case (a “fast target” in STAP [space–time adaptive processing] terminology), total
interference mitigation is not accompanied by a significant degradation in target SWNR. In
the second case (a “slow target”), the target is close to at least one of the interferers and the
resultant interference “nulling” leads to a dramatic signal-power reduction.

Note that for the clairvoyant detector (R = R0), as well as for the standard GLRT and AMF
detectors, this distinction does not affect the ROC if the output SNRs are identical:

σ2
sLsLH

0 R−1
0 sL

0 = σ2
sHsHH

0 R−1
0 s†

0. (6.145)
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Of course, the standard GLRT and AMF detectors are CFAR detectors and therefore their
false-alarm rate (thresholds) do not depend on the particular scenario in (6.144). For the intro-
duced 2S-GLRT, EL-AMF, and LAMF detectors, it is necessary to demonstrate that the invari-
ance of their output target-free statistics predicted in Subsection 6.2.2.4 is sufficient for constant
false-alarm thresholds.

The training sample size N in all our simulations has been chosen according to the RMB
rule that ensures 3-dB average SNR losses in the SMI adaptive filter: N = 2M = 24.

6.2.2.5.2 Homogeneous Interference Training Conditions; Fluctuating Target
with Unknown Power

First, consider the performance of the clairvoyant detector

|y†R−1
0 s|2

s†R−1
0 s

H1
>
<
H0

h > 1 (6.146)

whose ROC has the well-known analytic expression

Pd = exp

[
− h

1 + σ2
s s†

0R−1
0 s0

]
(6.147)

where h is the threshold and (σ2
s s†

0R−1
0 s0) is the output SNR. For the AMF (ML-AMF) detector,

the probability of false-alarm PFA and of target detection can be expressed somewhat differently
to RFKN [5] (see Appendix IV of Reference 1)

PFA = 2F1(N − M + 1, N − M + 2, N + 1; −h)

= 1

(1 + h)N−M+1 2F1

(
N − M + 1, M − 1, N + 1; − h

1 + h

)
(6.148)

where 2F1(α, β, γ; x) is the hypergeometric function [42], and

Pd =
[

1 + σ2
s s†R−1s

1 + σ2
s s†R−1s + h

]N−M+1

×F1

(
M − 1, −(N − M + 1), N − M + 1, N + 1;

σ2
s s†R−1s

1 + σ2
s s†R−1s

,
σ2

s s†R−1s + h

1 + σ2
s s†R−1s + h

)
(6.149)

where F1(α, β, β′, γ; x, y) is the hypergeometric function of two variables [42]. Note that [42]

2F1

(
M − 1, 0, N + 1;

σ2
s

1 + σ2
s

)
= 1 (6.150)

hence for h = 0, Pd = 1, and for σ2
s = 0, Pd = PFA. These analytical expressions are used

to validate the results of our Monte-Carlo simulations. Specifically, we shall compare the
simulated and theoretical ROC for the clairvoyant detector and use the free software rou-
tine gsl_sf_hyperg_2F1 from the GNU Scientific Library (GSL) (http://www.gnu.org/
software/gsl/) to calculate 2F1(α, β, γ; x) and so find the threshold values h for false-alarm
rates from 10−2 to 10−4. Comparison of the analytically computed values with those computed
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Figure 6.3 Sample pdfs for the loaded general test with different loading factors and six
interferers, but with the same M = 12 and N = 24 used in Figure 6.1.
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Figure 6.4 Sample pdfs for the target-free output signal of the LAMF detector, with different
loading factors and a target close to one of the six interferers (a.k.a. “slow” or “low-
ratio” target)

over a large number of Monte-Carlo trials demonstrates an excellent match that finally validates
the accuracy of the other Monte-Carlo results.

Next we consider the performance of our new detectors, beginning with LAMF that we
expect to serve as a benchmark for the 2S-GLRT and EL-AMF detectors with adaptive (data-
dependent) loading factors, as suggested by the theoretical framework. Figure 6.3 shows sample
pdfs calculated over 106 Monte-Carlo trials for the LR γ

(1)
0� (6.14) and three fixed loading factors

β = 0.5, 1.6, 2.5. We see that the loading factor β = 1.6 comes close to matching distribution
of the LR generated by the true covariance matrix R0 shown in Figure 6.1, with a median value
of 0.0257. Therefore for this scenario we expect β = 1.6 relative to a noise power of σ2

n = 1
to be a “sufficient” constant loading factor.

For this relatively low diagonal loading, the accuracy of our “white-noise” approximation
(6.120) of the output “target-free” statistics becomes a critical issue that must be addressed
first. Figure 6.4 illustrates sample pdfs for the output “target-free” statistics calculated over
106 Monte-Carlo trials for the “slow” target in (6.144). (The pdfs for the “fast” target are
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Figure 6.5 Comparison of theoretical (noise-only) and actual (target-free output signal of the
LAMF detector) threshold values for PFA = 10−2 and varying loading factors. The
correspondence of the curves demonstrates the CFAR nature of the LAMF detector.

not presented here, since they are indistinguishable.) The invariance of false-alarm rate with
respect to the target scenario is thus demonstrated.

In order to assess the accuracy of our “white-noise” theoretical approximations for the
output “target-free” statistics, we can calculate sample pdfs (104 trials, “slow” target scenario)
of the target-free output signal for the LAMF detector for loading factors ranging from β =
0.5 to 48 and then determine the threshold associated with the desired false-alarm rate (say
PFA = 10−2). Comparing those values to the actual threshold values calculated (again for
PFA = 10−2) using the theoretical “white-noise” representation (6.120) (106 trials), we find an
highly accurate correspondence of threshold values, as shown in Figure 6.5. Hence for this
scenario, the LAMF detector is indeed a CFAR detector, since false-alarm threshold values can
be precalculated with sufficient accuracy for any given value of m (the number of dominant
covariance matrix eigenvalues). This comparison also proves similar CFAR properties of EL-
AMF and 2S-GLRT detectors, since they are based on the same analytical approximation (see
Theorem 2).

Now we are in a position to consider the ROC of the clairvoyant, standard AMF, and LAMF
detectors, which are presented in Figure 6.6 for false-alarm rate set at PFA = 10−4. The ROCs
for PFA = 10−2 and 10−3 are not presented here, as they are little changed. (Again, the ROCs
for the slow target are identical to this fast target and are also not presented.) We observe
an excellent match between the simulated (ideal) and analytical (theoretical) ROCs for the
clairvoyant detector (6.146), proving the accuracy of the simulations. Despite the different
target model (fluctuating in our study and non-fluctuating in References 4 and 5), the standard
AMF detector (ML-AMF) demonstrates performance similar to that in Reference 5. Indeed,
for PFA = 10−4 and Pd = 0.5, the ML-AMF SNR loss factor is about 5 dB, compared with
about 3 dB in Reference 7. A first-cut interpretation of this would be that AMF is incurring
an additional ∼ 2-dB losses due to adaptive thresholding. Recall that the RMB losses are just
adaptive antenna filter losses and do not include any thresholding losses.
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Figure 6.6 AMF ROCs for the fast target, PFA = 10−4, for various AMF variants (upper figure)
and loadings (lower figure). Note that LAMF performance is not particularly sensitive
to the precise loading value. Even a small diagonal loading (β = 0.5) is only marginally
inferior (<0.1 dB) to LAMF for its “optimal” (EL-predicted) loading of β � 1.6.

The most important result following from Figure 6.6 is that LAMF (EL-AMF) does indeed
have significantly better performance. Indeed, the SNR loss factor for PFA = 10−4 and PD = 0.5
is 1.6 dB, compared with 5 dB for the standard AMF detector. Less expected is the fact that a
very small diagonal loading (β = 0.5) is only marginally inferior (< 0.1 dB) to LAMF for its
“optimal” loading of β � 1.6. The “optimality” for this fixed loading factor does not need to be
very accurately specified. In fact, although not shown, the ROC performance for β = 12, 24, 48
is indistinguishable from β = 1.6. This mirrors justifications for the insensitivity in choosing
loading levels for LSMI with strong point-source interferers [46,47].

Thus, our expectations regarding LAMF superiority and performance invariance with
respect to the constant loading factor 1 � β < μ are proven correct for this “favorable” sce-
nario. Its quasi-CFAR properties obviously make LAMF especially attractive in such cases;
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Figure 6.7 ML-GLRT ROCs for the high-ratio target for three different false-alarm probabilities.

this and its high performance sets a high bar for our “theoretically derived” 2S-GLRT and
EL-AMF detectors.

Next, we consider the ROCs of the ML-GLRT method (6.103) and (6.104), where only
the lower bound for the LR is introduced (that is dependent on the optimized loading fac-
tor β or interference-subspace dimension m). Figure 6.7 shows the ML-GLRT ROCs for the
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Figure 6.8 Sample pdf for the optimum loading in the ML-GLRT technique.

“high-ratio/fast” target; as before, the ROCs for the “low-ratio/slow” target are visually iden-
tical. The lower bound αL = 0.0142 has been chosen so that the probability of generating
a LR below this threshold for the true matrix R0 is very low: P(LR(R0|XN ) < αL) is set to
0.1 (see Figure 6.1). As we might expect, we see that the ML-GLRT performance is prac-
tically identical to that of the (standard) ML-AMF method with its (unloaded) SMI. Again,
this precise coincidence is not caused by a trivial zero loading-factor selection in the detec-
tion test optimization (6.103). The pdf for the selected loading factor for 3-dB output SNR is
presented in Figure 6.8. We see that, despite their different nature, our 2S ML-GLRT detector
has the same performance as the traditional (zero loading) ML-AMF detector. This proves our
assertion that a single snapshot does not make a significant difference, even for the relatively
small sample-support studies here. The difference in the covariance matrix estimates for the
specific target model analyzed by Kelly [4] is responsible for the slightly better performance
of ML-GLRT compared with ML-AMF, whereas for some other models these two techniques
are found to be identical (e.g. [20]), or even AMF outperforming GLRT (e.g. [5]).

When both lower and upper bounds on the LR for the optimized loading are introduced
in accordance with the EL-GLRT method (6.103) and (6.105), the results are completely
different. Figure 6.9 shows the ROCs for the high-ratio target; the ROCs for the low-ratio
target are practically identical and are not presented. Despite the broader area of admissible
LR values, P(LR < αL) = 10−2 and P(LR > αU ) = 10−2 (αL = 0.0084 and αU = 0.0647), the
EL-GLRT ROCs are surprisingly close to those produced by the EL-AMF and LAMF methods.
Indeed, the same improvement compared with 2S ML-GLRT and ML-AMF is observed in this
case. The same practical performance for the diagonal loading and the interference-subspace
dimension selection is observed, despite the fact that in this case the optimized signal-subspace
dimension is far from being always correct in the 2S EL-GLRT algorithm.

This analysis of a typical scenario with fluctuating target in homogeneous interference
clearly demonstrates that ML-based ML-GLRT and ML-AMF detectors share the same
performance, while a significant and practically identical performance improvement is obtained
for both techniques when our new EL approach is substituted for the standard ML criterion
for finding the appropriate diagonal loading or interference-subspace dimension.
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Figure 6.9 EL-GLRT ROCs for the high-ratio target for three different false-alarm probabilities.
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As expected for this “favorable” scenario, the data-independent loading of LAMF (6.109)
has the same performance as the “theoretically derived” EL-GLRT and EL-AMF techniques.
The precise coincidence of performance for the completely different detectors EL-GLRT, EL-
AMF, and LAMF most likely means that they have all approached the ultimate performance
set by the adaptive detection problem formulation.

Note that the LR generated by the properly loaded (β = 1.6) matrix R̂LSMI is statistically
close to that for the true matrix R0. This match could then be used as a new guide for selecting
the diagonal loading factor, but from a theoretical viewpoint could again be treated as another
justification of our EL methodology.

6.2.2.5.3 Non-homogeneous Interference Training Conditions; Fluctuating Target
with Unknown Power

Here, we briefly introduce our simulation results for this alternate signal model, detection rules,
and LRs (6.110)–(6.116) which demonstrate the same overall findings as for homogeneous
interference training conditions.

We begin with the ROC of the clairvoyant detector:

| y†R−1
0 s|2

s†R−1
0 sY†R−1

0 y

H1
>
<
H0

h ≥ 1

M
(6.151)

that can be analytically computed as [48]

PD =
[

(1 − h)(σ2
s s†R−1s + 1)

(1 − h)(σ2
s s†R−1s + 1) + h

]M−1

(6.152)

with PD = PFA for σ2
s = 0. This expression will again be used to validate our Monte-Carlo

simulation accuracy.
As before, we start with an analysis of the traditional ML-AMF (ACE) detector (6.113) and

compare it with LAMF and EL-AMF. Monte-Carlo simulation of the pdf of the “sphericity
test” LR that is used for this model as the EL benchmark is for all practical purposes the same
as the “general (non-sphericity) test” that we saw in Figure 6.1, and comparison of the LRs
produced for various loading factors shows a correspondence with the pdf produced with a
loading factor of β = 2.5.

Similar to the previous homogeneous case, we checked the accuracy of our theoretical
“white-noise” approximation for the target-free output statistics (Theorem 1) and found a
perfect match between these and the directly calculated false-alarm threshold values.

Figure 6.11 shows the high-ratio target sample ROCs for the clairvoyant, ML-AMF (ACE),
and LAMF detectors, the latter for our three example loading factors. As expected, the theoret-
ical and sample ROCs for the clairvoyant case match perfectly. ML-AMF (ACE) has familiar
detection losses of about 3.5 dB for PFA = 10−4 and PD = 0.5 [5,40].

The practically identical performance of LAMF for all three loading factors (and that is only
1 or 1.5 dB inferior to the clairvoyant detector) now comes as no surprise. Figure 6.10 also shows
the sample pdf of the EL-AMF loading factor that matches LR[R̂LSMI (β)] of the loaded sample
matrix to the median LR value 0.026. We see that the less accurate a priori assumptions on the
interference covariance matrices in the primary and training data have resulted in noticeably
greater admissible loading factors, from about 1.6 to 3.5. Most importantly, Figure 6.11 shows
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Figure 6.10 Sample pdfs for the optimum loading in the EL-AMF technique.

that EL-AMF is as good as the properly loaded LAMF. Again, the FML detector correctly
found the number of sources and is as good as EL-AMF and LAMF.

Now, we consider the ML-GLRT (6.110) and (6.111) results, with its lower bound on
optimized LR: P(LR < αL) = 0.01 (αL = 0.0145 according to Figure 6.3). Figure 6.12 presents
the “slow” target ROCs (the “fast” ones are almost identical). Unsurprisingly, standard ML-
AMF (ACE) and ML-GLRT have almost the same performance for all PFA and PD, both for
diagonal loading and interference-subspace dimension selection. Once again, this coincidence
does not mean the trivial equality of these routines. In fact, the ultimate interference-subspace
dimension m̂ = 9 was selected in about 40% of all trials, and the true interference rank (equal
to six) was selected in only 10% of trials.

Similar insight is provided by analyzing the sample pdf of the optimized ML-GLRT loading
factor (not shown here). For target-free input data, this pdf is dominated by one peak at β � 0
and has a second peak at β � 2.8. The second peak is present for small SNRs such as 3–
5 dB and disappears for sufficiently strong targets (�15 dB), where zero loading dominates
the selection (probability above 0.9 for SNR >15 dB). It seems remarkable that these “random
walks” in the optimized loading factor and interference-subspace dimension leave practically
no trace on the ROC’s behavior, as they are found to be the same as for the standard AMF
(ML-AMF) test with constant zero loading.

Finally, let us consider the results of the EL-GLRT technique (6.110) and (6.112) for this sce-
nario, where the upper and lower bounds are specified by the conditions P(LR > αU ) = 10−2,
P(LR < αL) = 10−2 (with αL = 0.0056 and αU = 0.0659 according to Figure 6.3). Figure 6.13
illustrates the EL-GLRT ROCs that repeat the trend of being practically indistinguishable from
those of EL-AMF. Despite this, the EL-GLRT optimum loading factor has strikingly different
behavior and is strongly dependent on the primary data SNR.

In this regard, it is instructive to analyze the sequence of sample loading-factor distri-
butions with output SNRs varying from 3 to 30 dB (not all illustrated here). We found that
for the smallest output SNR, the pdf has two distinct peaks at β = 1.5 and 3.2. As the SNR
increases, the second peak decreases, until it disappears at 30-dB SNR. A detailed analysis
of the maximized function ĉos2(β) of (6.82) reveals the cause of the two peaks for small out-
put SNR; Figure 6.14 shows the sample pdf f (ĉos2) for the “slow” target and 3-dB output
SNR. We see that maximization of this function in the vicinity of ĉos2 = 1/M can “drive” the



202 CHAPTER 6 • Adaptive Radar Detection for Sample-Starved Gaussian Training

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Output SNR (dB)

D
et

ec
tio

n 
pr

ob
ab

ili
ty

Matched, Non-homog, Loaded, EL-SMI, ULA, M = 12,
  m = 6,  N = 24,  30-dB SNR, 10,000 trials, high-ratio target, PFA = 10−2

Matched, Non-homog, Loaded, EL-SMI, ULA, M = 12,
  m = 6,  N = 24,  30-dB SNR, 10,000 trials, high-ratio target, PFA = 10−4

Matched, Non-homog, Loaded, EL-SMI, ULA, M = 12,
  m = 6,  N = 24,  30-dB SNR, 10,000 trials, high-ratio target, PFA = 10−3

EL-AMF (loading)
ML-AMF
Ideal
EL-AMF (subspace)
Theoretical
1.5-loading
2.5-loading
3.5-loading

EL-AMF (loading)
ML-AMF
Ideal
EL-AMF (subspace)
Theoretical
1.5-loading
2.5-loading
3.5-loading

EL-AMF (loading)
ML-AMF
Ideal
EL-AMF (subspace)
Theoretical
1.5-loading
2.5-loading
3.5-loading

(a)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Output SNR (dB)

D
et

ec
tio

n 
pr

ob
ab

ili
ty

(b)

0 5 10 15 20 25 30
0

0.2

0.4

0.6

0.8

1

Output SNR  (dB)

D
et

ec
tio

n 
pr

ob
ab

ili
ty

(c)

Figure 6.11 Non-homogeneous AMF ROCs for the high-ratio target for three different false-
alarm probabilities.
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Figure 6.12 Non-homogeneous ML-GLRT ROCs for the low-ratio target for three different false-
alarm probabilities.
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Figure 6.13 Non-homogeneous EL-GLRT ROCs for the low-ratio target for three different false-
alarm probabilities.
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Figure 6.14 Sample pdf for ĉos2 for the “slow” target scenario and 3-dB output SNR.

argument either into the area ĉos2 < 1/M (which means no detection) or into the admissible
area with ĉos2 > 1/M. In the former case, greater loading factors (within the permitted range)
are selected, while in the latter case, smaller loading factors are found to be optimal. Similar
behavior is exhibited by the optimal interference-subspace dimension m. It is remarkable that,
despite the significant redistribution of the optimized ĉos2 compared with the clairvoyant (and
EL-AMF) cases, the overall ROCs are exactly the same as the EL-AMF ones, and only about
1 dB below the clairvoyant case.

This detailed analysis demonstrates that the accurate equivalence of EL-GLRT, EL-AMF,
and LAMF performance is not due to the trivial equivalence of these routines for the given
model, as in Reference 20 for example. Such an accurate performance equivalence of these three
quite different algorithms suggests that in different ways both methods approach the ultimate
performance set by the nature of the adaptive detection problem. It is also evident that the
particular parameters used here for EL-GLRT (Pbound = 10−2) and EL-AMF (Pmedian = 0.5)
have no practical impact upon the demonstrated performance.

6.2.2.5.4 “Unfavorable” Interference Scenario
It seems quite important to conclude our study by considering the performance of our new
detectors for interference models that are “unfavorable” for the LSMI and/or FML techniques,
that is, scenarios with full-rank interference (no “noise subspace”) and having no obvious
abrupt change in the size of the (sorted) covariance matrix eigenvalues.

In fact, adaptive processing does not make sense for small ratios λ1/λM . Even the clair-
voyant detector has only a marginal improvement over the “white-noise-matched” receiver in
this case, hence the loss associated with adaptivity can actually exceed the potential improve-
ment. The ultimate example of such a scenario is input white noise. Of course, nobody should
consider adaptive processing for internal white noise, but sometimes the external interference
environment can resemble white noise, such as when the number of strong interference sources
exceeds the number of antenna sensors (exceeding the degrees of freedom of the array). If the
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only available information about the external interference is contained in the training data, then
a properly designed adaptive detector should succeed for such scenarios as well.

Let us now consider the same six-source interference scenario (6.141) and (6.143), except
that each source is now equally “spread” (distributed) [49]. Here the interference covariance
matrix R0 can be written as [50]

R0 = B �
⎡⎣σ2

n IM +
6∑

j=1

σ2
j s(wj)s†(wj)

⎤⎦ (6.153)

where [49]

B = {exp [−ν|� − k|]}�,k=1, ..., M , β > 0 (6.154)

is the “spreading matrix” and � denotes the Schur–Hadamard (element-wise) matrix product.
Similar to Reference 49, we use a spreading factor of ν = 0.25.

Such spreading “annihilates” the noise subspace of the original point-source covariance
matrix. The eigenspectrum shown in Figure 6.2 is now characterized by a ratio λ1/λM =
10 compared with the original λ1/λM � 35 dB. Moreover, the clairvoyant optimum filter
(Wopt = R−1

0 s) has an SNR improvement over the “white-noise”-matched filter (wwn = s)
of only 0.40 dB for the high-ratio (fast) target and 0.27 dB for the low-ratio (slow) target,
compared with the favorable scenario values of 28.5 dB and 26.7 dB, respectively.

We consider non-homogeneous training conditions with a fluctuating target of unknown
power. (Based on our previous results, we expect similar behavior for the homogeneous sce-
nario.) Since the clairvoyant and ACE ROCs do not depend on scenario and are exhaustively
specified by N , M, PFA, and output SNR, the ACE detector will again be about 3.5 dB inferior
to the clairvoyant detector. We need to investigate whether the EL-AMF and properly loaded
LAMF detectors can reduce these losses for diagonally loaded and FML sample covariance
matrix estimates. Since the pdf for the sphericity test LR(R0) is scenario-independent and so
is the same as already shown in Figure 6.1, we can proceed to the pdfs of the sphericity test
LR(R̂LSMI ) for the three loading factors β = 3, 5,000, and 10,000; Figure 6.15 shows the
latter two.

0

0.01

0.02

0.03

0.04

0 0.05 0.1 0.15 0.2 0.25

Sa
m

pl
e 

pr
ob

ab
ili

ty

LR

Loaded sphericity test, Spread, ULA, M = 12, N = 24, w = (−0.8, −0.4, 0.2, 0.5, 0.7, 0.9),
30-dB SNR, 10,000,000 trials            

Loading 5,000
Loading 10,000

Figure 6.15 Sample pdfs for the loaded sphericity test for spread (distributed) interferences.
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The traditional loading factor of β = 3 (with respect to unit internal noise power) for
favorable scenarios is in this case “as good as” zero loading, as it does not affect the LR whose
pdf is concentrated within the range of LRs 0.9996–1. Only for very high loading factors such
as 5,000 and 10,000 (as shown in Figure 6.15) the LR pdf behaves similar to the EL benchmark.
Note that β = 104 means that the diagonal loading here is of the same order of magnitude
as the maximum eigenvalue of the true covariance matrix R0. In fact, such loading “drives”
LAMF towards the “white-noise-matched” detector

|y†s|2
y†ys†s

H1
>
<
H0

h >
1

M
(6.155)

which is quite understandable given the marginal SNR improvement provided by the clairvoy-
ant optimal filter.

Naturally, the CFAR properties for “favorable” covariance matrices that were proven in
Subsection 6.2.2.4 do not hold for these scenarios and such loading factors. Indeed, for the
low-ratio (slow) target and β = 104, the false-alarm rates PFA = 10−2, 10−3, 10−4 are imposed
by the threshold values 0.43, 0.56, 0.66, respectively, while for the high-ratio (fast) target they
are 0.22, 0.32, 0.42. Despite losing the CFAR properties, a ROC analysis of LAMF still makes
sense (see Figure 6.16). Whereas the clairvoyant detector ROCs again demonstrate a perfect
match between analytical calculations and simulations, we see that the LAMF performance
for β = 3 is the same as for ACE, as predicted. At the same time, the “properly loaded” LAMF
detector (β = 5,000, 10,000) is only 0.4 dB inferior to the clairvoyant detector. The similar
performance of EL-AMF now comes as no surprise.

Figure 6.17 shows the sample pdf (calculated over one million trials) of the optimum
loading factor in the EL-AMF technique that was found by matching the sphericity test LR
for the loaded sample covariance matrix R̂LSMI with the “expected” LR value LR0 = 0.026
(see Figure 6.1). As we might expect, the optimum loading factor lies mostly in the range
5, 000 � β � 10, 000. Interestingly, the optimum signal-subspace dimension histogram (not
illustrated here) is not single-valued: 146 trials chose m̂ = 6, with the remainder m̂ = 7.
While the “loaded” EL-AMF detector is as good as LAMF with proper loading, the EL-FML
detector (where the signal-subspace dimension is found by LR matching (6.114) and (6.115))
is marginally inferior (less than 0.2 dB). The coarse discretization of the parameter m could be
the reason for this small degradation.

Note that traditional recommendations regarding loading-factor selection (β = 3) or signal-
subspace selection (m = 6), stemming from favorable conditions, are completely inappropriate
here.

Whereas the properly loaded LAMF detector is statistically equivalent to EL-AMF, in prac-
tice, when only a sample covariance matrix is available, the only option seems to be to choose
the “proper loading factor” (such as β = 104) through LR matching with the “expected” LR.

Results for the low-ratio (slow) target, as well as the 2S EL-GLRT detector, are similar:
2S ML-GLRT is as good as the conventional ACE, with 2S EL-GLRT, EL-AMF, and properly
loaded LAMF being marginally inferior to the clairvoyant detector.

Finally, we wish to comment that the loss of the CFAR property for 2S EL-GLRT, EL-AMF,
and LAMF is explained by the EL matching driving them close to the robust “white-noise”-
matched detector, which is not a CFAR detector with respect to the covariance matrix R0 (
= IM )
and signal s.
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Figure 6.16 Non-homogeneous AMF ROCs for the high-ratio target for spread interferences.
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Figure 6.17 Sample pdf for the optimum loading in the EL-AMF technique for spread
interferences.

6.2.3 Observations
In this section, we have diligently pursued two major goals. First, based on the well-known
properties of the LSMI and FML adaptive filter techniques, we introduced adaptive detectors
that use the same type of covariance matrix estimates. We did this anticipating that such
detectors should have better performance than those that use the conventional ML covariance
matrix estimate, at least for (favorable) interferences that have widely separated signal and noise
eigensubspaces. Having achieved this, we second addressed an important theoretical issue that
follows from the now-established superiority of these LSMI and FML detectors. Namely, it
seemed necessary to us to suggest modification of the frameworks that were introduced for
GLRT by Kelly [4] and for AMF by RFKN [5] to include these new advanced detectors.
We sought a modified theoretical framework that would either justify these detectors and/or
generate new ones that are at least as efficient as LAMF and FML for favorable scenarios.

More specifically, with respect to the first goal, we demonstrated that (for favorable inter-
ference) the LAMF detector that uses the diagonally loaded sample covariance matrix estimate
whose loading factor is chosen from the broad range between the minimum signal and the noise
eigenvalues does indeed give a significant detection performance improvement. Moreover, for
such interference we demonstrated an important invariance property of the “target-free” detec-
tion statistics. We showed that these statistics are invariant with respect to the true covariance
matrix and can be closely approximated by “white-noise-generated data” and that the pdf is
only a function of the filter dimension, the training sample size, the signal-subspace dimen-
sion, and the loading factor. The approximation accuracy is sufficiently high to permit the
precalculation of false-alarm thresholds, which means that in this case the LAMF detector has,
in fact, the CFAR property.

With quite negligible losses demonstrated by LAMF compared to the clairvoyant detector,
it then became a challenging problem to propose a theoretical adaptive detection framework
capable of giving similar detection performance. In order to achieve this second goal of our
study, we reconsidered two important issues in adaptive detection that were postulated within
the traditional (Kelly’s one-sample) GLRT and AMF techniques. The first concerns the arrange-
ment made by Kelly [4] whereby “the decision rule will be formulated in terms of the totality
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of input data without the a priori assignment of different functions to the primary and sec-
ondary input.” Specifically, despite the assumption that the secondary data are free of target
component, “any selection rules applied to make this assumption more plausible are ignored”
in his technique. We have reformulated the GLRT problem as a 2S adaptive detection problem,
where the target-free status of the training data is respected, and so the interference covariance
matrix estimate, while depending on the primary sample, does not depend on the hypothesis
being tested.

More specifically, we have introduced a new 2S-GLRT technique whereby the single covari-
ance matrix estimate for both hypotheses is adaptively selected from a family of admissible
solutions so as to maximize the “detection function,” which is the associated likelihood ratio.
Unlike most published studies, we used the fluctuating Swerling I model for the target sig-
nal, which is specified by a (possibly unknown) positive power. This modeling introduced
some important changes into the nature of the optimized LR; most importantly, since a non-
positive ML target power estimate is inadmissible, it must be replaced by a zero estimate that
corresponds to a decision that the target is absent.

The second (more important) issue that we have reconsidered here concerns the ML criterion
used within the traditional GLRT and AMF techniques. It is important that only asymptotic
arguments support the GLRT methodology, so there is no reason why estimates other than the
ML one could not be found to be better suited for detection, especially for relatively small
training sample sizes. Three straight-forward observations alerted us to challenge this dogma.
The first stems from the difference in performance between Kelly’s GLRT and the AMF
methods; for different models, one method was found to be superior [5]. The suggestion made
in Reference 5 that Kelly’s technique should be better just because it involves an additional
single (primary) snapshot in the covariance matrix estimation could be easily refuted, and so
the performance difference should rather be attributed to the specific estimates used.

The second observation arises from the fact that the LSMI or FML sample covariance
matrix estimates, which are found to be very successful in LAMF (FML) detectors, are not the
ML covariance matrix estimates.

The third theoretical observation arises from a comparison of the actual LR (which is just
the normalized likelihood function) produced by the exact (true) covariance matrix and the
(unconstrained) ML estimate adopted by both GLRT and AMF. While the ML covariance
matrix estimate (sample matrix) always delivers the ultimate value for the maximized LR,
equal to one irrespective of the sample size, the exact covariance matrix yields much smaller
LRs for relatively small sample support. For the specific example analyzed in this section, with
a M = 12-sensor uniform linear antenna array and N = 24 samples, the median value of the
LR for the exact covariance matrix is found to be only 0.025, and with probability 0.99 the
LR lies in the range 0.008–0.07. Thus for relatively small sample support, the ML estimator
is extremely far from the true covariance matrix, even in terms of the LR/LF metric.

For this reason, we have introduced an approach called “EL,” whereby we try to find the
estimate that statistically generates the same LR as the exact covariance matrix. This is feasible
in practice since the pdf for the LR generated by the exact covariance matrix does not depend
on the matrix itself, but only the parameters M and N , and so it can be precalculated.

We have used the above well-known families of covariance matrix estimates: the diagonally
loaded sample matrix (i.e. the loaded unconstrained ML solution) and the finite-subspace
interference approximation of the ML solution. For these estimates, respectively, the traditional
ML criterion drives the loading factor to zero, and the interference-subspace dimension to its
maximum. For 2S ML-GLRT, the loading factor and interference-subspace dimension are
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constrained only by the lower bound on LR, while the maximum LR value is allowed to reach
the ultimate value of unity, as per the ML solution. Despite the new formulation, our Monte-
Carlo simulations demonstrated that 2S ML-GLRT detection performance is almost the same
as for the traditional ML-AMF (ACE) method that uses the standard ML covariance matrix
estimate (zero loading, full interference rank). Thus, the detection performance is again proven
to be dominated by the type of ML estimate rather than the choice of GLRT or AMF method
that uses this estimate.

Our new EL method searches for the diagonal loading or interference-subspace dimension
so that the modified EL estimate gives a LR value properly within the range of LRs expected for
the exact covariance matrix. To be more specific, for the 2S EL-GLRT method, we maximize the
detection function over the set of (loaded, finite-rank) solutions bounded by the precalculated
upper and lower LR bounds. For the EL-AMF (ACE) technique, we seek the loaded solution that
generates the median LR value of the exact covariance matrix. For finite-rank approximations
that have only a finite number of solutions, we simply find the one that is closest to the upper
LR bound, if no solution within the bounds is available.

Our extensive Monte-Carlo simulations for a scenario with signal- and noise-subspace
eigenvalues separated by several tens of dBs showed that the EL-GLRT and EL-AMF methods
have practically the same performance. For finite-rank approximation in this example, all
solutions were of the same subspace dimension, as only the true interference rank estimate
was closest to the bounded LR region, making no difference between “adaptive” and “fixed”
signal-subspace dimension. While the loading factor fluctuates in the well-known range of
1.5–3 times the white-noise power, depending on the output SNR, the detection performance
of EL-GLRT is the same as for the EL-AMF approach, whereby the loading factor is selected
based on the training sample only. Most importantly, this performance is significantly better
than that of the ML-GLRT and ML-AMF detectors (the loss factor improved to 1–1.5 dB below
the clairvoyant case for Pd = 0.5 and PFA = 10−2 – 10−4 compared with 5 dB for the standard
GLRT and ACE techniques) and again is practically the same in this case as for robust selection
of the constant loading factor (β = 3σ2

n ) for the LAMF technique.
These results demonstrate that our EL criterion for the proper families (diagonally loaded,

finite interference rank) gives a significant improvement in detection performance compared
with the ML criterion, which for small sample support produces solutions far away from the
exact ones. We emphasize that the introduced families include the standard (unconstrained)
ML covariance matrix estimate, while the major distinction stems from the attempt to get a
statistically close LR to that of the exact covariance matrix, rather than just the (ultimate) max-
imum LR value. This is an important distinction from some optimum search over a restricted
set of covariance matrices, such as the class of Toeplitz covariance matrices. Any reliable
a priori structural information on the covariance matrix should always lead to a detection
improvement, however we chose the most generic families specifically to underline the dif-
ference in criteria (EL versus ML), rather than any possible difference in covariance matrix
description.

More specifically, this approach allowed us to generate solutions that for favorable scenarios
and LSMI/FML applications demonstrated the same detection performance as the “constant-
loaded” LAMF detector. The fact that in this case the modified 2S EL-GLRT and EL-AMF
framework had the same performance may be treated as an additional justification for the “con-
ventional” LSMI/FML technique that is now used in the adaptive detectors. Indeed, we believe
that the surprisingly accurate coincidence of ROCs for the three quite different techniques as
2S EL-GLRT, EL-AMF (with adaptively chosen loading), and “conventional” LAMF (with
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constant loading) just means that they all approach the best possible performance that is set by
the adaptive detection problem formulation itself.

For favorable scenarios, it has been known since [13,14] that the loading factor can be
robustly selected so that the SNR performance of the LSMI adaptive filter does not depend on
any particular loading value. Now we have demonstrated that this property extends to include
LAMF detection performance under the condition that the false-alarm threshold is adjusted to
the selected loading factor.

The other simulation scenario that we considered was specifically selected to not have
this favorable property, with its full-rank “spread” interference sources and relatively small
separation between signal- and noise-subspace eigenvalues. We demonstrated that for a given
sample support, a constant loading factor can still be selected that makes LAMF performance
as good as EL-AMF performance with its data-dependent loading factor. Both these detectors
are significantly better than the standard AMF (ACE) technique, even though at the expense
of losing the CFAR property. Yet, the loading factor for this scenario must be chosen to be
comparable to the maximum eigenvalue, unlike our previous favorable scenario whose optimum
loading was comparable to the white-noise power (minimum eigenvalue). It is evident that
some “scenario recognition” needs to be considered in order to avoid erroneous loading-
factor selection. From this viewpoint, the EL-AMF method that has a universal LR fitting for
adaptive loading-factor selection based only on the training data has an important practical
advantage.

Finally, for favorable scenarios, the EL-AMF and 2S EL-GLRT detectors enjoy the CFAR
property, similar to the LAMF detector. The output target-free statistics for these detectors
can be approximated with high accuracy by white-noise-only data. The pdfs of these statis-
tics are functions of sample support N , filter (antenna) dimension M, number of dominant
eigenvalues m, the lower and upper LR bounds αL, αU (for EL-GLRT), and the median LR
value (for EL-AMF). While accurate analytic expressions for these pdfs have not been derived,
we demonstrated that white-noise Monte-Carlo simulations can be used to give sufficiently
accurate false-alarm threshold values.

6.3 Improving Adaptive Detection Using Covariance
Matrix Structure

It is shown in Section 6.2 and Reference 1 that rank reduction techniques such as loading and
FML can also be applied to adaptive detectors that encounter “small-rank” covariance matrix
estimates (CMEs). In cases described by a model of finite-rank interference and white noise,
we demonstrated both a significant performance improvement and robust behavior of such
“small-rank” techniques.

However, for applications that deal with spread/distributed/scattered/broadband interfer-
ence sources (in terms of Doppler and/or spatial frequency) [51], the rank of the covariance
matrix is typically not so small nor well defined, and so other parametric models are applied,
such as an autoregressive model of order m, AR(m), where m is small compared to M [52,53].

We emphasize that in dealing with spread interferences (or backscattered clutter) in this
section, we still only consider scenarios where the clairvoyant filter wopt is significantly better
than the non-adaptive “white-noise optimal” filter wWN = s/(s†s), in contrast to the spread
sources illustrated in Figure 6.2. In our considered cases here, the performance improvement is



6.3 • Improving Adaptive Detection Using Covariance Matrix Structure 213

much greater than the totality of losses associated with adaptivity (e.g. finite-sample support),
and so for spread interferences we are still dealing with a quite large ratio of largest to small-
est eigenvalue of the true covariance matrix R, λ1/λM , in accordance with the Kantorovich
inequality given in (6.2.1). Thus, instead of the “cliff-like” interference eigenspectrum for
“small-rank interference” models given in (6.6) that were considered favorable in the previous
Section 6.2, spread interferences require us to consider a smoother “slope-like” eigenspectrum
that may be better described by a small-order AR model.

While AR(m) models and, in general, stationary models with Toeplitz covariance matrices
are used in some practical applications [54], they are often considered too restrictive. Indeed,
in dealing with time sequences in TAP (that is typically applied to adaptively mitigate clutter),
we must consider strictly stationary clutter and strictly periodic pulse trains. If the clutter is
not stationary (e.g. due to platform motion in airborne radar, or ionospheric motion in over-
the-horizon radar) or the pulse train is not periodic, the clutter covariance matrix is no longer
Toeplitz. For antenna array applications, the Toeplitz covariance model is even more restrictive
since it implies a perfectly calibrated uniform linear antenna array.

Therefore, by removing this stationarity assumption, instead of the AR(m) model that can
describe any M-variate positive definite (p.d.) Toeplitz covariance matrix (for m = M −1), we
now want to find a model that analogously describes (for m = M −1) any M-variate Hermitian
covariance matrix. One such approximation is well known and frequently used in adaptive
processing: the above model of m < M point (rank-one) sources in white noise. Unfortunately,
for spread sources this model may require m to be equal to the number of dominant covari-
ance matrix eigenvalues, and hence considerably exceed the number n of spread interferences.
For such scenarios, we seek an “AR(m)-like” model that can describe a Hermitian covari-
ance matrix with some number of dominant eigenvalues that significantly exceeds the model
order m.

We expect that for the maximum possible order mmax = M − 1, such an “AR(m)-like”
model will accurately describe any given M-variate p.d. Hermitian covariance matrix. Such
an approximation is provided by the Dym–Gohberg band-matrix extension technique [55],
whereby any given M-variate p.d. Hermitian matrix R is transformed into a unique TVAR(m)
approximation Rm with the remarkable property that its elements are exactly the same as those
of R within the (2m + 1)-wide central band, while outside this band its elements are extended
such that all elements of the inverse matrix R−1

m outside the band are zero. (Note that the AR(m)
approximation of a p.d. Toeplitz matrix has the same property.)

We recently demonstrated [56] that the Dym–Gohberg (DG) transformation of the tradi-
tional sample CME R̂ averaged over N > m i.i.d. Gaussian training samples is the ML estimate
of the TVAR(m) covariance matrix Rm. Then in References 57 and 58, we introduced methods
for estimating the order m of a TVAR(m) or AR(m) model, again given N > m i.i.d. Gaussian
data samples. These results allow TVAR(m)-based adaptive detectors to be used effectively
for truly TVAR interferences, truly AR interferences, and non-TVAR interferences. In the first
two cases, any study should focus on the performance degradation with respect to the clair-
voyant detector caused by finite-sample support (stochastic losses). In the latter case, the study
should also consider model-mismatch losses, which clearly depend on scenario. Indeed, when a
TVAR(m) model serves only as an approximation to an arbitrary Hermitian covariance matrix,
it may or may not be found to be the most appropriate approximation for the given matrix,
steering vector, and sample size. For example, it is possible to choose between “small-rank” and
“small TVAR-order” approximations and even to try to make this decision adaptively, driven
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only by the training data. Since a solution of the more complicated problem involving non-
TVAR interference relies on the stochastic properties of TVAR(m)-based adaptive detectors,
it is natural to concentrate this study on the stochastic properties of TVAR(m)-based adap-
tive filters and detectors, leaving the methodology for non-TVAR interference applications for
separate studies [59–61].

While in References 56–58 we addressed theoretical issues of TVAR(m) model and order
estimation with a few illustrative examples, this study concentrates on a performance analysis
of adaptive filters and (especially) adaptive detectors for interference with TVAR(m) or AR(m)
properties, limited by finite-sample support.

When considering the stochastic losses, there are two major issues regarding the efficiency
of the ML TVAR CME for adaptive processing that need to be addressed. First, we need to inves-
tigate the efficiency of adaptive filters (beamformers) that use this ML estimate; specifically,
we need to analyze the SNR losses associated with the sample volume N in the general case
where the order of the adaptively estimated model TVAR(μ) may be overestimated, i.e. when
μ ≥ m. Second, for TVAR(μ)-based adaptive detectors, we also need to investigate whether
this ML estimate gives a satisfactory CFAR, which means that the pdf of the target-free output
signal of the detector is sufficiently invariant (robust) with respect to the true TVAR(m) covari-
ance matrix, to the extent that false-alarm thresholds can be precalculated in some way with
an acceptable accuracy. (For example, in addressing the CFAR property for diagonally loaded
adaptive detectors in Section 6.2 and Reference 1, we proposed certain “white-noise equiva-
lent” models that for most important practical cases allow us to precalculate these thresholds
with high accuracy.)

It is for this reason that the central issue of this section, which studies the performance of
adaptive detectors based on the ML TVAR CME, is an analysis of the sensitivity of false-alarm
rate on the scenario, and the search for scenario-invariant equivalent models. For adaptive
detectors that are “practically CFAR,” we then evaluate their performance with the standard
receiver operating characteristic (ROC) curves.

This section has the following structure. Subsection 6.3.1 briefly reintroduces the TVAR(m)
model from References 56 and 57 as a finite-order parametric approximation of an arbitrary
Hermitian covariance matrix for adaptive estimation and describes the DG transformation that
provides this approximation.

Subsection 6.3.2 shows that the SNR loss compared to the clairvoyant filter, due to finite-
sample support, is not strictly independent of the true covariance matrix R, nor, especially, the
structure of the steering vector s. A similar dependence is found for TVAR(μ)-based adaptive
detectors, which are also introduced in this section, as is an equivalent model that allows the
SNR loss and false-alarm rate to be precalculated with a certain accuracy that may be acceptable
in many practical applications.

Subsection 6.3.3 analyzes the accuracy of this equivalent model by Monte-Carlo simu-
lations of various TVAR(m)/AR(m) scenarios by comparing the actual and predicted perfor-
mances of the TVAR(μ)-based adaptive filters/detectors. We demonstrate that the weak depen-
dence of SNR loss and false-alarm rate on the scenario is due to a quite subtle phenomenon,
namely that a certain univariate distribution of random numbers is indeed scenario-invariant,
but the corresponding multivariate pdf is not. This analysis justifies the substitution of the
true (correlated) TVAR(m) interference by a “white-noise” equivalent model that captures the
important properties of finite-sample support and steering vector dimension. Though analytic
expressions for the SNR loss and false-alarm rate are not derived for the equivalent model,
false-alarm thresholds etc. can be found by Monte-Carlo simulations.
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6.3.1 Background: TVAR(m) Approximation of a Hermitian
Covariance Matrix, ML Model Identification and Order
Estimation [56,57]

The “band-inverse” TVAR(m) approximation of an arbitrary Hermitian covariance matrix R
is calculated by the Dym–Gohberg band-extension method. Let R ≡ {

rjk
}

jk=1...M be a given
M-variate non-negative-definite Hermitian matrix with rank greater than m, then the TVAR(m)-
model approximation of R is the p.d. Hermitian matrix Rm such that{ {Rm}jk = rjk for |j − k| ≤ m{

R−1
m

}
jk = 0 for |j − k| > m.

(6.156)

The solution to the problem of finding Rm given R is provided by the following theorem that
was first proven by Dym and Gohberg [55].

Theorem 6.3. (DG Transformation) [55] Given an M-variate Hermitian matrix R ≡
{rjk}j,k=1,...,M, suppose that⎡⎢⎣ rjj . . . rj,j+m

...
. . .

...

rj+m,j . . . rj+m,j+m

⎤⎥⎦ > 0 for j = 1, . . . , M − m; |j − k| ≤ m (6.157)

i.e. all (m + 1)-variate submatrices in the band of R are p.d. For q = 1, . . . , M, let⎡⎢⎣ yqq
...

yL(q),q

⎤⎥⎦ =
⎡⎢⎣ rqq . . . rq,L(q)

...
. . .

...

rL(q),q . . . rL(q),L(q)

⎤⎥⎦
−1
⎡⎢⎢⎣

1
0
...
0

⎤⎥⎥⎦ (6.158)

and ⎡⎢⎣ z(q),q
...

zqq

⎤⎥⎦ =
⎡⎢⎣ r(q),(q) . . . r(q),q

...
. . .

...

rq,(q) . . . rqq

⎤⎥⎦
−1
⎡⎢⎢⎣

0
...
0
1

⎤⎥⎥⎦ (6.159)

where L(q) ≡ min{M, q + m} and (q) ≡ max{1, q − m}. Furthermore, let the M-variate
triangular matrices V and U be defined by their elements

vjk ≡
{

yjky
− 1

2
kk for k ≤ j ≤ L(k)

0 otherwise
(6.160)

ujk ≡
{

zjkz
− 1

2
kk for (k) ≤ j ≤ k

0 otherwise
(6.161)

then the M-variate matrix given by

Rm ≡ (V†)−1V−1 = (U†)−1U−1 (6.162)

is the unique p.d. Hermitian matrix that satisfies (6.156).
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By construction, U and V are band-triangular matrices with the same order (bandwidth) as
the TVAR(m) model.

In Reference 62, it was proven that the p.d. submatrix condition (6.157) is the necessary
and sufficient condition for the p.d. extension (6.156) to exist. Moreover, analogous to the
stationary AR(m) case, among all possible extensions that exist if (6.157) is satisfied, the
Dym–Gohberg extension Rm with its special band-inverse property (6.156) has the maximum
possible determinant [62,63]. Therefore, analogous to the AR(m) model that is the maximum-
entropy extension of the first (m+1) covariance lags of a stationary process, the Dym–Gohberg
extension may be treated as the generalized maximum-entropy extension of the given Hermitian
band rjk (|j − k| ≤ m).

The p.d. submatrix condition (6.157) implies that, with probability one, N > m i.i.d. training
samples xj (j = 1, . . . , N), together with the usual sample CME

R̂ ≡ {r̂jk
}

j,k=1,...,M = 1

N

N∑
j=1

xjx
†
j (6.163)

which is rank-deficient for N < M, are sufficient to calculate a non-degenerate ML TVAR(m)
CME R̂m. More particularly, if the training data have a Gaussian distribution

xj ∼ CN N (0, R) for j = 1, . . . , N > m, (6.164)

then we showed [56] that the DG transformation of the sample CME R̂m (denoted DG(R̂, m))⎧⎪⎨⎪⎩
{

R̂m

}
jk

= r̂jk for |j − k| ≤ m{
R̂

−1
m

}
jk

= 0 for |j − k| > m
(6.165)

is the exact and unique ML estimate of a TVAR(m) covariance matrix Rm.
It is interesting to note that this CME R̂m ≡ DG(R̂, m) (6.165) has already been introduced

in Reference 64 for mmax = N − 1 as a certain regularized estimate of the rank-deficient
sample CME R̂, and it was observed that for a particular scenario there is an optimum order
m < mmax in terms of adaptive filter performance.

In References 57 and 58, we also considered the problem of estimating the order of a
TVAR(m) model, given the a priori condition

m ≤ mmax ≤ N − 1, N ≤ M. (6.166)

The main idea here is to treat the p.d. ML CME R̂mmax ≡ DG(R̂, mmax) calculated for the
somehow-specified maximum possible order mmax ≤ N − 1 as a sufficient statistic for a
“nested” model R̂μ with μ ≤ mmax, since for N < M the standard sample CME R̂ cannot
serve as the TVAR model:

LRoe(R̂μ) = LF[X, R̂μ]

LF[X, R̂mmax ]
(6.167)

(LR is likelihood ratio, LF is likelihood function).
If m is the true order of the AR or TVAR training data, then for all μ ≥ m, the pdf of this

LR (6.167) is scenario-invariant, i.e. LRoe(R̂μ) does not depend on R, but is only a function of
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M, N , and μ, similar to some other LRs that have this remarkable and practically important
property [41,51]. Thus for truly TVAR(m) or AR(m) interference, we compare LRoe(R̂μ) with
the threshold that has been precalculated using the scenario-invariant pdf, and we select our
estimate m̂ to be the smallest permissible value of μ that exceeds this threshold. Given M, N ,
mmax, andμ, this threshold can be calculated for any desired probability of order overestimation.
In this section, we mainly investigate adaptive filter and adaptive detector performance for
TVAR(m) or AR(m) interference, hence this method is directly applicable.

The only remaining problem for truly TVAR(m) or AR(m) interference (that was not
addressed in Reference 57) is how to select the maximum possible order mmax (if it is not
restricted by some a priori considerations). Of course, if N ≤ M, then we can always select
mmax = N − 1, but this may not be the best choice. This is because for m ≥ N there may not
be sufficient sample support available. Also, for m 	 N , it would be preferable to deal with
mmax < N − 1, since the “quality” of the R̂N−1 estimate is the worst possible for N snapshots,
which in turn makes the order estimation less reliable.

Therefore, the problem of selecting mmax must be addressed by a separate test [65]. The
procedure for TVAR(m) order estimation consists of the following two steps.

Step 1 Find the sufficient statistics R̂mmax

Given N i.i.d. training samples (N < M), form the ordered sequence of ML TVAR(μ) CMEs
R̂μ (μ = 1, . . . , N − 1) using the DG transformation (6.165), then find

mmax = arg min
μ

det(X†R̂
−1
μ X)[

Tr(X†R̂
−1
μ X)

]N > γ0 (6.168)

where

γ0 ≡ arg

{∫ ∞

γ0

f (x) dx = Pd

}
, (6.169)

Pd is the probability of detection, and f (x) is specified by the scenario-invariant pdf for Rμ = R

f (LRus) = C(M, N) LRM−N
us GN ,0

N ,N

(
LRus

∣∣∣∣ N2−1
N , N2−2

N ,..., N2−N
N

0,1,...,N−1

)
(6.170)

where

C(M, N) ≡ (2π)
N−1

2 N
1−2MN

2
(MN)∏N

j=1 (N − j + 1)
(6.171)

and Gc,d
a,b( · ) is Meijer’s G-function [42]. If the threshold is not reached by the final μ = N −1,

then the sample volume N is declared to be insufficient.

Step 2 TVAR(μ) order estimation m̂ given mmax [57]

Find m̂ ≡ min μ among all μ that meet the inequality (see (6.167))

LRoe(R̂μ) > γμ (6.172)

where

γμ ≡ arg
γ

∫ 1

γ

F(x|μ, mmax) dx ≡ 1 − Poo (6.173)
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Poo is the probability of order overestimation, and [57]

F(x|μ, mmax) ≡ C(M, N , mmax, μ)x(N−mmax−1)G(M−μ−1),0
(M−μ−1),(M−μ−1)

(
x
∣∣∣mmax−μ,...,mmax−μ
mmax−μ−1,...,0,...,0

)
(6.174)

where

C(M, N , mmax, μ) =
M−μ−1∏

j=1

[N − μ]

[N − ζj(mmax)]
(6.175)

ζj(mmax) ≡
{

mmax for j < M − mmax

M − j for M − mmax ≤ j < M − μ.
(6.176)

Naturally, for an a priori known maximum order mmax, Step 2 suffices.
For truly TVAR(m) models and “proper” maximum-order selection (i.e. m < mmax < N),

this method has a high accuracy of order estimation [57]; specifically, for the scenarios con-
sidered in Reference 57, the true order was estimated with a zero sample probability of order
underestimation, with an overestimation probability that did not exceed Poo. For this accuracy,
the analysis of adaptive TVAR(μ)-based filters and detectors could have been performed for
the true TVAR(m) or AR(m) order, however in what follows we analyze their performance tak-
ing into consideration possible order overestimation, the probability of which does not depend
on scenario.

Note that the probability of order underestimation strongly depends on scenario, but under-
estimation occurs only if all the elements along the mth subdiagonal of R−1

m are close to zero.
For the scenarios we consider, this probability is vanishingly small, and so we ignore it in this
study.

6.3.2 Performance Analysis of TVAR(m)-Based Adaptive Filters
and Adaptive Detectors for TVAR(m) or AR(m) Interferences

As discussed, in this subsection, we consider the case where the true interference covariance
matrix R is a p.d. TVAR(m) matrix:

R = Rm > 0,
{

R−1
m

}
jk

= 0 for |j − k| > m (6.177)

and we observe N > m i.i.d. training samples, so that the ML CME R̂μ of the TVAR(μ) model
is the DG transformation/extension (6.162) of the sample matrix R̂ (6.163) for all μ < N . The
performance of the adaptive filter that uses this CME R̂μ is measured by the SNR loss factor
(6.2.1) with respect to the clairvoyant Wiener filter

ρ = (s†R̂
−1
μ s)2

(s†R̂
−1
μ RmR̂

−1
μ s) (s†R−1

m s)
< 1. (6.178)

The TVAR(μ)-based adaptive filter performance is completely described by the pdf of this
loss factor, which is in general a function of μ, N , s, and Rm.
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The AMF adaptive detector that employs this ML CME R̂μ to test the primary sample y

y =
{

x0 ∼ CN (0, Rm) for hypothesis H0

x0 + as, a ∼ CN (0, σ2) for hypothesis H1
(6.179)

where x0 is the observed M-variate interference-only data vector (snapshot) and a is the com-
plex target amplitude (with power σ2), is specified by the detection statistic [5]

fAMF ≡
∣∣∣Y†R̂

−1
μ s
∣∣∣2

s†R̂
−1
μ s

H0

≶
H1

hFA > 1. (6.180)

Detection performance (via ROC curves) of this detector can be investigated for any desired
false-alarm threshold hFA, even if this depends on Rm, however this analysis only shows
the ultimate detection performance that is not practically attainable unless the false-alarm
threshold can somehow be precalculated (to a sufficient accuracy) without a priori knowledge
of the true covariance matrix Rm. In this happy circumstance, as in Section 6.2, the detector
may be called “practically CFAR,” and additional detection losses associated with false-alarm
threshold inaccuracies should also be analyzed.

We now similarly analyze the TVAR(m)-based AMF adaptive detector (6.180). Since the
true covariance matrix has the Dym–Gohberg decomposition (6.162)

R−1
m = VV†, (6.181)

the target-free primary data vector x0 may be presented as

x0 = (V)−1ε for ε ∼ CN N (0, IM ). (6.182)

By defining the matrix

Ĉμ ≡ V†R̂μV = V†DG(R̂, μ)V = V†(V̂†
μ)−1V̂−1

μ V (6.183)

we can express the SNR loss factor (6.178) as

ρ =
{

c†Ĉ
−1
μ c
}2

{
c†Ĉ

−2
μ c
}

c†c
(6.184)

where c ≡ V†s and rewrite the detection statistic (6.180) for the target-free (interference-only)
primary sample as

fAMF =
∣∣∣ε†Ĉ

−1
μ c
∣∣∣2

c†Ĉ
−1
μ c

(6.185)

where ε = V†y = V†x0. By this transformation, it is now clear that the scenario-invariance
property of the loss factor and the CFARness of the adaptive detector directly depend on the
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invariance property of Ĉμ. Unfortunately, under the TVAR(m) model, the matrix Ĉμ is not
described by a spherically invariant pdf (e.g. a Wishart distribution), i.e.

pdf (Ĉμ) 
= pdf (Y†ĈμY) for Y†Y = YY† = IM (6.186)

where Y is some unitary matrix. Therefore, despite the fact that E{V̂μ} = V (see (6.158) and
(6.181)) and hence

E[V̂μV−1] = IM , lim
N→∞ Ĉμ = IM , (6.187)

it is not possible in general to prove the strict scenario-invariance of the SNR loss factor ρ, nor
that of the detection statistic fAMF , with respect to the true covariance matrix Rm.

However, in the special case of an MTI filter, where

s = e ≡ [1, 0, . . . , 0]T , c† = sT V = v11eT , (6.188)

the loss factor in (6.184) can be transformed using the band properties of Û (6.161) and V̂
(6.160) into an expression that is well known for the (μ + 1)-variate traditional SMI algo-
rithm [7]:

ρe =

{
eT
[
R̂(μ+1)]−1

e
}2

{
eT
[
R̂(μ+1)]−1

R(μ+1)
[
R̂(μ+1)]−1

e
}

eT
[
R̂(μ+1)]−1

e
(6.189)

where

R(μ+1) ≡
⎡⎢⎣ r11 . . . r1,μ+1

...
. . .

...

rμ+1,1 . . . rμ+1,μ+1

⎤⎥⎦ (6.190)

and similarly for the estimated quantities. It is now clear that this SNR loss factor is exactly
described by the familiar beta distribution [7]

f (ρe) = 1

B[N − μ + 1, μ]
(ρe)N−μ(1 − ρe)μ−1. (6.191)

Similarly, for this specific case, the CFAR property of the AMF detector (6.179) can be easily
demonstrated.

Note that it is the spherical invariance property of the pdf Ĉμ that is required to prove the
strict scenario-invariance of the pdf for the loss factor ρ (6.184) (when the steering vector s is
arbitrary). Moreover, if this invariance existed then this beta distribution would describe the
loss-factor pdf for the general case. Unfortunately, the proof of this spherical invariance is not
only intractable, but the experimental results presented below show that the loss factor does
depend on scenario, and its pdf differs significantly from the beta distribution (6.191). In fact,
we will see that the actual SNR losses exceed those predicted by this beta distribution in all of
our experiments. This might be expected, since our special MTI case of s = e1 involves just a
single (m + 1)-variate block of the entire M-variate matrix, while the adaptive filter solution
for the general s case involves all such blocks and hence accumulates random errors associated
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with the finite-sample support. For this reason, the beta distribution (6.191) can serve as a
scenario-invariant lower bound for the loss factor.

To find a scenario-invariant upper bound, we may consider a specific scenario that, in terms
of SNR losses (statistically at least), dominates scenarios of practical interest.

Note that the SNR loss ρ in (6.184) depends on “how close” Ĉ
−1
μ is to the identity matrix,

since only when Ĉ
−1
μ → IM does the loss factor tend to unity. Therefore, proximity of Ĉ

−1
μ to

IM , and more importantly, dependence of this proximity on scenario, should be associated with
the behavior of the SNR loss factor ρ and its dependence on scenario. Of course, the complete

description of these properties is provided by the exact multivariate pdf of Ĉ
−1
μ . Yet proximity

of a random Hermitian matrix to the identity matrix can also be determined by a number of
statistical tests (e.g. see Reference 36). In Reference 57, we chose to use the likelihood-ratio
test (that is optimal for a complex Wishart distribution [36]):

LRμ(Ĉμ) = exp (M) det(Ĉμ)

exp[Tr(Ĉμ)]
≤ 1 (6.192)

and proved that the pth moment of its pdf (for μ ≥ m) is

E
{

[LRμ(Ĉμ)]p
}

= NMN exp(Mp)

(N + p)M(N+p)

M∏
j=1

[N − L(j) − j + p]

[N − L(j) − j]
(6.193)

where

1 ≤ L(j) − j ≤ μ (6.194)

i.e. this pdf does not depend on the true covariance matrix Rm. Hence the manner in which
Ĉμ → IM as N → ∞ does not depend on the scenario, at least within the metric of the
considered LR. While the scenario-invariance of this particular LR pdf does not imply scenario-
invariance of the overall Ĉμ pdf, we can expect that transformations (such as Hermitian forms)
involving Ĉμ are also not very sensitive to scenario.

Unfortunately, Ĉ
−1
μ does not enjoy a similarly invariant LR. Indeed, according to (6.183),

Ĉ
−1
μ = V−1V̂−1

μ V̂†
μ(V†)−1 = V−1R̂

−1
μ (V†)−1 (6.195)

hence

LRμ(Ĉ
−1
μ ) = exp M det(Ĉ

−1
μ )

exp
[
Tr(Ĉ

−1
μ )
] = LR[V̂†

μRmV̂μ] ≡ LR(D̂). (6.196)

In Reference 57, we showed that det Ĉ
−1
μ (for μ ≥ m) can be presented as the product of

independent variables with a pdf that is a function only of N , m, and μ. Therefore, if the
diagonal elements in D̂ were found to be independent variables whose pdf was also fully

specified by N , m, and μ, then the invariance of the pdf for LRμ(Ĉ
−1
μ ) can be proven, once

again leading to hope for the invariance of Hermitian forms of Ĉ
−1
μ , as in the SNR loss factor



222 CHAPTER 6 • Adaptive Radar Detection for Sample-Starved Gaussian Training

ρ (6.184). While it is straight-forward to prove that each diagonal element in D̂ has a scenario-
invariant pdf (Appendix 1 in Reference 57), the multivariate pdf for the diagonals does not, and

so neither does the pdf for LRμ(Ĉ
−1
μ ). Yet, dependence on scenario in tr Ĉ

−1
μ is rather weak,

via the correlation of random variables with the invariant multivariate pdf. This means we can

expect any scenario variations in the pdf for LRμ(Ĉ
−1
μ ), and hence for ρ, to be quite small.

Of course, the weakest correlation for these variables occurs for uncorrelated input data,

i.e. when Rm = IM (the “white-noise model”), and so has the biggest impact on tr Ĉ
−1
μ for

this model in decreasing its root-mean-square error. The pdf for LRμ(Ĉ
−1
μ ) should therefore

be “more concentrated” for the white-noise model, with smaller “tails” expanding towards

larger LR values, and correspondingly “more diagonal” properties of Ĉ
−1
μ . Hence we expect,

on average, more stable but slightly exaggerated SNR losses ρ. In fact, our calculations in the
next subsection confirm this prediction and show that the (small) differences in pdfs for the LR
and SNR loss for the highly correlated TVAR model and the white-noise interference matrix
Rm = IM meet our expectations.

We adopt the “white-noise equivalent model” in order to calculate the more realistic upper
bound on the SNR loss factor (6.184):

ρ < ρWN =
{

s†F̂
−1
μ s
}2

{
s†F̂

−2
μ s
}

s†s
≤ 1 (6.197)

where

F̂μ ≡ DG(R̂WN , μ), R̂WN ≡ 1

N

N∑
j=1

εε†, ε ∼ CN N (0, IM ). (6.198)

In fact, this approximation implies the substitution

Ĉμ ≡ V†DG(R̂, μ)V → DG(V†R̂V , μ) (6.199)

i.e. we replaced the “whitened” DG transformation of the sample matrix by the DG transfor-
mation of the “whitened” sample matrix.

Despite this approximation, ρWN still depends on the steering vector; indeed, for the MTI
filter s = e, this approximation coincides with (6.189), which has the β-distribution (6.191)
that we proposed as a lower bound for the general case. An exact expression for the pdf of ρWN

(for an arbitrary steering manifold) is not yet known, however it can be easily precalculated
for any M, N , μ, and s using Monte-Carlo simulations.

The relatively weak dependence of the pdf properties of Ĉ
−1
μ on scenario also suggests that

the white-noise interference model Rm = IM can also be used to precalculate the false-alarm
thresholds for the statistics fAMF (6.185):

fAMF =
∣∣∣ε†Ĉ

−1
μ c
∣∣∣2

c†Ĉ
−1
μ c

→
∣∣∣ε†F̂

−1
μ c
∣∣∣2

c†F̂
−1
μ c

. (6.200)
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Moreover, this weak dependence suggests that a covariance matrix in any way more like R
than just IM will give better accuracy in predicting SNR losses or false-alarm thresholds.

In some practical applications, this sort of “notional” covariance matrix model can be
precalculated; indeed, the ultimate “notional” model is the ML estimate R̂μ itself. We can
treat R̂μ as the true TVAR(μ) covariance matrix in an “equivalent” scenario, then for a given
steering vector s we can conduct the required number of Monte-Carlo simulations in order to
generate any number of training samples that are described by the covariance matrix R̂μ. In
this way, the SNR loss factor and (more importantly) false-alarm thresholds are then accurately
calculated for R̂μ (and not for Rm as we really wish). Yet, due to this weak scenario-dependence,
these thresholds may be sufficiently accurate to possess the “practical CFAR” property for the
detector. This technique is the essence of the bootstrap methodology, where R̂μ is treated as
the covariance matrix “within the bootstrap world” [66].

The accuracy of this bootstrap technique, and the white-noise equivalent model, is assessed
numerically in the next subsection.

6.3.3 Simulation Results of TVAR(m)-Based Adaptive Detectors
for TVAR(m) or AR(m) Interferences

Since accurate analytic results for TVAR(m) adaptive filter and detector performance are
unavailable, the equivalent “white-noise” model introduced in Subsection 6.3.2 as an approx-
imation must be validated by direct Monte-Carlo simulations. We remind the reader that this
study concerns truly AR(m) or TVAR(m) covariance matrix models.

First consider a stationary AR(2) model that we have often used [57,58,67–73] for simple
sea-clutter modeling in high-frequency over-the-horizon radars:

yj = −
2∑

κ=1

aκyj−κ + σ2
0 ηj for j = 3, . . . , M (6.201)

where a1 = −1.9359, a2 = 0.998, σ2
0 = 0.009675, and ηj ∼ CN (0, 1). For the M = 128

length vector that corresponds to the typical number of repetition intervals (sweeps) within the
coherent processing interval (dwell), we model the multiplicative Doppler-frequency (iono-
spheric) modulation by the diagonal matrix

Dk = diag

{
exp

[
i
2πk

M

(
1 − cos

2πj

M

)]}
(6.202)

for j = 1, . . . , M, where k is the index of the frequency modulation (FM), then

x = Dk y, R2 ≡ E{xx†} = Dk N2 D†
k (6.203)

where N2 ≡ E{yy†} is the Toeplitz covariance matrix of the AR(2) process, so the resulting
process x is a TVAR(2) one. Of course, for the special stationary case k = 0, the TVAR(2)
model collapses to an AR(2) model (R2 = N2).

We assume that the target signal is not affected by FM, i.e.

s(ν) = [1, exp(i2πνN/M), . . . , exp(i2πνN[M − 1]/M)
]T

(6.204)
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Figure 6.18 TVAR(μ)-based filter finite-sample-support SNR losses for k = 0 (stationary case),
N = 32 snapshots, and various hypothesized orders μ (the true order is m = 2).

where ν is the Doppler frequency and is particularly interested in the SNR loss factor with
respect to the clairvoyant Wiener filter (6.178):

ρ(μ, ν, N , M) = [s†(ν)R̂
−1
μ s(ν)]2

s†(ν)R̂
−1
μ R2R̂

−1
μ s(ν)s†(ν)R−1

2 s(ν)
< 1. (6.205)

We begin this set of TVAR(2) simulations with the well-understood stationary case k = 0,
where the Toeplitz covariance matrix N2 is estimated as a TVAR(μ) covariance matrix. The
function s†(ν)R−1

m s(ν) (not illustrated) is the output SNR of the clairvoyant Wiener filter, and
at the same time the inverse of the MVDR (minimum-variance distortionless response, also
known as Capon) clutter spectrum. As expected, the output SNR has a minimum when the
target Doppler frequency coincides with the resonant frequency of the clutter.

Figure 6.18 shows the SNR sample loss factor ρ(μ, ν, N = 32, M = 128) (6.205) as
a function of ν for various hypothesized orders μ = 2, 4, 9, 29 (the true order is m = 2)
calculated for a particular sample ML CME R̂2. We see two sharp notches in the loss factor
(i.e. relatively large losses) in the neighborhood of the resonant frequencies. Clearly the loss
factor is not strictly scenario-invariant, though even for this modest sample-support case, the
losses are less than 4 dB at the resonant frequencies; elsewhere the TVAR(μ) adaptive filter
has a very small SNR degradation (an average of 1 dB for the correctly estimated order μ = 2,
rising to less than 5 dB for the significantly overestimated order μ = 9) and is statistically
indistinguishable across frequency.

These results show that adaptive TVAR(μ) “embedding” of a stationary AR(m) model does
not incur significant degradation, and even the modest sample support N � 3μ has SNR losses
comparable with those of the traditional SMI technique with N � 2M.

For a slightly non-stationary case (very small FM parameter k in (6.202)), Figure 6.19 with
its k = 5 shows us that the departure from the corresponding stationary case in Figure 6.18
is, not surprisingly, insignificant. Here we observe the same two notches at the resonant fre-
quencies, but already for k = 20 (Figure 6.20) these have disappeared, leaving the loss factor
independent of Doppler frequency. At the same time, the losses away from the resonant fre-
quencies are scenario-invariant, being practically the same for k = 0, 5, 20 for the fixed
N = 32.
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Figure 6.19 TVAR(μ)-filter finite-sample-support SNR losses for k = 5 (slightly non-stationary
case) and N = 32 snapshots.
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Figure 6.20 TVAR(μ)-filter finite-sample-support SNR losses for k = 20 (non-stationary case)
and N = 32 snapshots.
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Figure 6.21 Histogram of TVAR(μ)-filter finite-sample-support SNR losses for k = 40 and
N = 32 snapshots for various μ.

This ν-invariance means that we may calculate a (sample) pdf of ρ averaged over all Doppler
frequencies, which we do so at Figure 6.21 for 32 snapshots and 10,000 Monte-Carlo trials.
By looking at the μ = 9 curve, we again see that the modest sample support N � 3(μ + 1)
(for μ ≥ m) gives rise to average losses of about 2.2 dB.



226 CHAPTER 6 • Adaptive Radar Detection for Sample-Starved Gaussian Training

Table 6.1 Interference point-source direc-
tions for the TVAR(5) simulation
experiment.

n θ1 θ2 θ3 θ4 θ5 θ6

1 20◦

2 20◦ 23◦

4 0◦ 20◦ 23◦ 60◦

6 0◦ 10◦ 20◦ 23◦ 40◦ 60◦

10 20 30

100

105

Eigenvalue index

Ei
ge

nv
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ue

1 interferer

10 20 30
Eigenvalue index

2 interferers

10 20 30
Eigenvalue index

4 interferers

10 20 30
Eigenvalue index

6 interferers

Rmod

TVAR(Rmod)

 M = 32,  T  = 10,  m  = 5,  50-dB INR

Figure 6.22 Eigenspectra of the TVAR(5) covariance matrix N5 = DG(Rmod, 5) for various
numbers of point-source interferers n in the TVAR(5) simulation experiment.

To summarize the results so far, our TVAR(2) model shows SNR loss-factor invariance
with respect to the target Doppler frequency (except for the notches in the stationary case) and
to the FM index k. We now wish to demonstrate this quasi-invariance over the broader class
of AR(m)/TVAR(m)-type covariance matrices.

To do so, we need to create a set of AR(m)/TVAR(m) models that, for the same order
m, cover a wide range of different covariance matrix properties. We therefore consider an
M = 32-sensor uniform linear antenna array, with an interference covariance matrix R5 that
is the DG transformation DG(Rmod, m = 5) of the covariance matrix Rmod calculated for
various numbers of point sources in white noise n = 1, 2, 4, 6 (the subscript “mod” represents
“model”). Naturally, for this uniform array, this transformation just results in an AR(5) model
with the Toeplitz matrix N5, but the same approach can be applied to a non-uniform (sparse)
array to yield a TVAR(5) model. The target direction was chosen to be θ0 = −15◦, with the
interference directions in Rmod presented in Table 6.1.

The common INR for all sources was chosen to vary from −∞ (no interference, noise-
only) through −10, 10, 50 dB, with 105 Monte-Carlo trials undertaken for each scenario. By
selecting such different signal scenarios for the same fifth-order autoregressive model, we tried
to span a representative variety for our SNR loss-factor invariance investigation.

First, Figure 6.22 compares the “cliff-like” eigenspectrum of the original covariance matrix

Rmod =
n∑

j=1

σ2
j s(θj)s†(θj) + σ2

0 IM (6.206)
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Figure 6.23 Sample pdfs of the SNR loss factor for TVAR(5) interference with n = 1 point
source for various INRs.
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Figure 6.24 Sample pdfs of the SNR loss factor for TVAR(5) interference with n = 6 point
sources for various INRs.

against that of its DG transformation DG(R, m = 5) for n = 1, 2, 4, 6 interference point
sources. (As usual, the eigenvalues are sorted into decreasing magnitude.) While each case
is exactly described by the same AR(5) model, the eigenspectra are completely different.
For a single interferer, there is an almost negligible “spill over” of energy beyond the single
dominant eigenvalue (both in number and magnitude), whereas the presence of four sources
already induces a “heavy tail” beyond the fourth dominant eigenvalue of R. For n = 6 (NB:
n > m), the eigenspectrum of R5 ≡ DG(Rmod, 5) bares no resemblance to that of Rmod,
with only a few of the smallest eigenvalues approaching the AWGN power level of unity.
Thus, despite the fact that all these scenarios are exactly described by the AR(5) model, the
properties of the matrix R5 ≡ DG(Rmod, 5) vary dramatically.

Considering such different AR(5) eigenspectra, the practical invariance of the correspond-
ing sample SNR loss-factor pdfs, illustrated by Figures 6.23 and 6.24, is remarkable. Recall
that the AWGN-only case (no interference, “noise only”) was suggested in Subsection 6.3.2
to serve as the scenario-invariant upper bound of SNR losses. Specifically, a comparison of
the sample pdfs for n = 1, 2, 4, 6 interferers at 50-dB INR shows a gradual shift into the
area of smaller losses as n increases; yet even for the worst case with n = 6, the difference
between the true median loss factor and its “white-noise approximation” is less than 0.3 dB.
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Figure 6.25 Sample pdf’s of the upper bound of the SNR loss factor for TVAR(5) interference
for various sample sizes N .

So while not strictly scenario-invariant, the SNR losses are shown to be quite insensitive and
the white-noise equivalent model (6.197) to be a quite accurate upper bound.

Figure 6.25 investigates another dimension of the parameter space: we show sample pdfs
of this upper bound for the sample sizes N = 10, 32, 64 to show how quickly the losses reduce
as the sample support increases. Comparing this figure with the completely different scenario
in Figure 6.21 reveals that the losses are dominated by N and μ > m, and rather insensitive to
M and the signal scenario. This very important “invariance” property of the SNR loss factor
in the adaptive filter that is constructed from the TVAR(μ) ML CME is similar to that of the
filter built from the LSMI CME for scenarios with “cliff-like” eigenspectra; but instead of the
number of dominant eigenvalues, we here need to consider the order μ of the TVAR(μ) model.

Note that these results must not be confused with the case where TVAR(μ) modeling is
applied to data that are described by a non-TVAR covariance matrix model, such as Rmod. The
application of TVAR(m) modeling for arbitrary (non-TVAR) interference is left to a separate
study employing a dataset produced by the Knowledge Aided Sensor Signal Processing and
Expert Reasoning (KASSPER) program, which is a phenomenological ground-clutter model
[74]. We remind the reader that in all the above Monte-Carlo trials, the training data have been
simulated as

xj = R
1
2
5 εj, εj ∼ CN (0, IM ), R5 ≡ DG(Rmod, 5) (6.207)

which means we are using an exact AR(5) model.
Now that the SNR loss factor of the TVAR(m)-based adaptive filter has been shown to be

almost invariant with respect to the underlying scenario, the next subsection of experimental
simulations deals with analyzing in detail the accuracy of the white-noise equivalent model
and its relation to the loss-factor upper bound.

First recall from (6.181) and (6.183) that

Ĉμ ≡ V†R̂μV , R−1
m = VV†. (6.208)

Figure 6.26 introduces the sample pdfs for the sphericity test [36]

LR(C) ≡ [det(C)](1/M)

1
M Tr(C)

(6.209)
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Figure 6.26 Sample pdfs of the sphericity-test likelihood ratio for various hypothesized TVAR
model orders μ.

calculated for both the direct Ĉμ and the inverse Ĉ
−1
μ sample matrices (labeled “TVAR”)

for various μ > m, with the other parameters as in Figure 6.21. Also shown are the LRs
for the “white-noise equivalent” matrices F̂μ (6.198) and F̂

−1
μ . In terms of the proximity of

the tested matrix Ĉ
−1
μ to the diagonal one (c0IM , c0 > 0), this test is as powerful as the

“general test” (6.192) [36]. In fact, due to the proven invariance of det C for all the above-
mentioned matrices, this test provides a direct insight into the impact of the scenario-dependent

behavior of tr Ĉ
−1
μ . As expected, the sample pdfs for LR(Ĉμ) and LR(F̂μ) (upper subfigure) are

identical. Meanwhile, the pdfs for LR(Ĉ
−1
μ ) and LR(F̂

−1
μ ) (lower subfigure) are visibly different

for μ = 2, 4, but by μ = 9 the difference is diminishing.
We can now demonstrate that this difference is due to a scenario-dependent correlation of

the diagonal elements of D̂μ, whereas the univariate pdf of these elements is scenario-invariant.
Figure 6.27 presents sample pdfs of the diagonal elements of the matrices

Ĉ
−1
μ ≡ V−1R̂

−1
μ (V†)−1, F̂

−1
μ ≡ DG(R̂WN , μ), D̂μ ≡ V̂†

μRmV̂μ. (6.210)

While the D̂μ and F̂
−1
μ distributions are practically the same, the Ĉ

−1
μ one is slightly different.

Since Rm = (V†)−1V−1, Tr(D̂μ) = Tr(Ĉ
−1
μ ), and det(D̂μ) = det(Ĉ

−1
μ ), and hence this
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Figure 6.27 Sample pdfs of the diagonal elements in various analyzed sample matrices.
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Figure 6.28 Histogram of various filter finite-sample-support SNR losses for k = 40 and N = 32
snapshots. (The set of four curves on the left refer to μ = 9, the right to μ = 4.)

difference can only be explained by a different (scenario-dependent) correlation of the equally
distributed elements in D̂μ and F̂

−1
μ . Our white-noise equivalent model ignores these distinc-

tions and therefore serves only as a close approximation.
The accuracy of this approximation is illustrated by simulation results shown in Figure 6.28.

The first curve (labeled “TVAR(μ)”) has already been presented in Figure 6.21, the “white-
noise (μ)” curve is our equivalent-model upper bound (6.197), and the “RMB theory (μ)”
curve is the lower-bound beta distribution (6.191). We see that the lower bound does indeed
underestimate the actual SNR loss factor, especially for larger orders. On the contrary, the
upper bound becomes more accurate for larger μ; this is not surprising since Figure 6.26 has

already shown that the likelihood ratios for Ĉ
−1
μ and F̂

−1
μ correspond very closely. Still, even

at its worst (μ = m = 2), the white-noise equivalent model does not overestimate the average
losses by more than 0.4 dB.
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Figure 6.29 Sample false-alarm thresholds for TVAR(5) interference with n = 1 point source.
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Figure 6.30 Sample false-alarm thresholds for TVAR(5) interference with n = 6 point sources.

To recapitulate, our analysis shows the high SNR performance of TVAR(μ)-based adaptive
filters for TVAR(m) interference and the acceptable accuracy of the SNR-loss prediction pro-
vided by the white-noise equivalent model. We may now turn our attention to the performance
of the adaptive detector (6.180). First, we need to validate the accuracy of the white-noise
model (6.200) for predicting false-alarm thresholds.

The sample dependence of false-alarm probability PFA on the detection-statistic threshold
value hFA (6.180) of the TVAR(m)-based AMF adaptive detector over 105 trials is shown in
Figures 6.29 and 6.30 for the same TVAR(5) scenario as in Figures 6.22–6.24. We see that the
white-noise equivalent model (6.200) mostly leads to an overestimation of the true false-alarm
rate (i.e. larger than the true rate), with the worst case being observed for n = 6 and 50-dB INR
where the white-noise-derived threshold results in PFA = 0.8 × 10−4 instead of the nominal
(i.e. desired) PFA = 10−3. The best case here is for n = 1; while for n = 2 (not shown here) we
observe a very slight false-alarm underestimation, for example, the nominal PFA = 10−3 gives
us PFA = 1.8 × 10−3. Of course, for this experiment with 105 Monte-Carlo trials, reliable and
meaningful results can only be made for PFA � 10−4.

It is interesting that for μ > m this scenario-dependence becomes less significant (not shown
here): the notable difference between the white-noise and actual thresholds for μ = 5 almost
disappears for μ = 7.
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Figure 6.31 Detection performance of TVAR(2)-based adaptive detector for problem dimension
M = 128 and N = 32 snapshots.

As predicted, the pdf for the “white-noise matrix” F̂
−1
μ is more concentrated around its

mean value, which is almost the same for Ĉ
−1
μ and F̂

−1
μ . From a practical viewpoint, the true

false-alarm rate that is below the desired one (0.0008 instead of 0.0010) is acceptable provided
that the SNR losses associated with the smaller-than-required false-alarm rate are appropriate.
On the contrary, if the true false-alarm rate exceeds the desired one, this can overload a tracker
and result in too many false tracks.

Figure 6.31 shows the ROCs for the Figure 6.21-scenario for the usual two hypothesized
orders. Each subfigure presents the ROC for the clairvoyant detector, the adaptive detector using
the (almost) exact false-alarm thresholds precalculated via Monte-Carlo simulations (labeled
“TVAR(μ)”), for the “practical” thresholds precalculated by the white-noise model, and finally
the bootstrap method. As expected, the smallest degradations (with respect to the clairvoyant
detector) occur for correct order estimation μ = m = 2. For the exact threshold, the loss is
only 0.5 dB at 50% probability of detection, which is marginally above the median SNR losses
in the TVAR(2) filter (about 0.4 dB according to Figures 6.21 and 6.28). Introducing practical
thresholds adds another 0.5 dB of degradation, meaning a total SNR loss of 1 dB compared to the
clairvoyant detector. Even for the significant overestimation of μ = 9, practical thresholding
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Figure 6.32 Detection performance of TVAR(5)-based adaptive detector with ideal false-alarm
thresholds for 10-dB INR.

contributes only 0.4 dB in additional losses, which means acceptable accuracy for the threshold
calculation based on the white-noise model. Similar observations follow from simulating the
ROCs for the TVAR(5) simulation experiment, with N = 10 snapshots and m = μ = 5 (not
shown here).

Figure 6.32 shows the ROCs for thresholds calculated using the white-noise equivalent
model (6.200) that for the cases n = 0, 1, 4, 6 lead to additional degradation, but at most
equal to 2.7 dB.

Overall, this scenario with its relatively small sample support (N = 2m) demonstrates not
only inferior detection performance compared with the previous scenario (with N = 3.6 mmax)
but also less accurate false-alarm threshold prediction by the white-noise equivalent model,
resulting in greater additional SNR losses. In this regard, it is interesting to explore the per-
formance capabilities of the “bootstrap” approach. As discussed in Subsection 6.3.2, instead
of the white-noise model, we treat the ML CME R̂μ as the true TVAR(μ) covariance matrix
and simulate enough training vectors (105, say) from R̂μ to calculate false-alarm thresholds
and other statistical parameters (which, though derived from R̂μ rather than the desired Rm,
are weakly dependent on scenario). Figure 6.28 also shows the sample pdfs of the SNR loss
factor in the adaptive filter, drawn from the “bootstrap data.” We see that this approach is very
successful, as it almost replicates the actual distributions, unlike the (upper-bound) white-noise
model. The bootstrap-derived thresholds are more similarly accurate than the white-noise ones
(not shown here). Not surprisingly, such accuracy carries over to bootstrap ROCs that are
almost identical to those calculated with (almost-) exact thresholds (Figure 6.31). Of course,
a real-time implementation of the bootstrap method may be difficult, unlike the white-noise
model. Yet, in principle at least, the established weak dependence of adaptive detector charac-
teristics, such as false-alarm thresholds and SNR loss factor on the true TVAR(m) covariance
matrix, allows us to consider applying various CFAR techniques to “fill the gap” between the
white-noise model (practical but somewhat inaccurate) and the bootstrap method (somewhat
impractical but accurate).

Up to this point, we have deliberately analyzed filter and detector performance for quite
high orders μ ≥ m in order to demonstrate that moderate or gross order overestimation does
not incur a significant loss; but of course, TVAR(μ) adaptive detector performance should
include order estimation as an integral part of the entire process. For the scenario of M = 128,
N = 32, k = 40, m = 2, and mmax = 5, we have already demonstrated [73] that the order
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is correctly estimated (m̂ = m = 2) in all 103 Monte-Carlo trials for a probability of order
overestimation Poo = 10−4, 10−3, while for Poo = 10−2 was it overestimated in eight trials,
as one might expect. With this high level of accuracy in our order estimation algorithm, it is
obvious that the previously presented ROCs (for μ = m) change very little when considering
the entire detection process. What we also demonstrated is that the maximum permissible order
mmax = 5 can be properly selected by using Step 1 (6.168) of our order estimation technique.

This analysis concludes our performance study of TVAR(μ) or AR(μ) adaptive detection
that includes (a) TVAR(μ) ML covariance matrix estimation using the DG transformation of the
sample covariance matrix R̂, (b) TVAR(m̂) model order selection using Step 1 (mmax estimation)
followed by Step 2 (m̂ estimation), and (c) “practically CFAR” false-alarm threshold calculation
using the “white-noise” or “bootstrap” equivalent models.

The final issue with TVAR(m)-based adaptive detection that we deal with here is a compar-
ison of its detection performance with the efficiency of another “sample-deficient” approach
that is associated with “small-rank” covariance matrix estimation. Specifically, we consider the
(diagonally) loaded AMF (LAMF) detector studied in Section 6.2 and reconsider our TVAR(5)
simulation experiment.

Recall that the TVAR(5) covariance matrix N5 is the DG transformation of the underlying
signal scenario DG(Rmod, 5). For such models with “slope-like” eigenspectra, as in the case
n = 4, 6 in Figure 6.22, we cannot expect the LAMF detector to be “practically CFAR”,
whereas it is for “cliff-like” scenarios such as n = 1, 2 with their small-rank covariance
matrix. (Indeed, both the false-alarm threshold and the loading factor are not easily specified
for “slope-like” eigenspectra.) For this reason, we will compare the potential performance
of the TVAR(m) and LAMF detectors with ideal false-alarm thresholds, bearing in mind
that additional detection losses are likely to be incurred by practical false-alarm threshold
calculation.

The (diagonally) loaded CME is [13,14]

R̂β = R̂ + βIM (6.211)

where β is the loading factor. For “cliff-like” scenarios (6.6), with their m dominant interferers
in white noise, the loading factor can be robustly selected within the range [46]

σ2
0 < β 	 λ̂m (6.212)

where λ̂m is the minimum “signal-subspace” eigenvalue of the sample CME R̂ averaged over
the N > m snapshots.

For TVAR(m) models with “slope-like” eigenspectra, we consider two options for loading-
factor selection: the first is

β = 2σ2
0 (6.213)

which is traditional for “cliff-like” scenarios, while the second is based on the recently proposed
“EL” methodology [1]. Specifically, the loading factor is selected so that the undersampled
LR (6.192) generated by the loaded CME R̂β is equal to the mean value of the LR generated
by the true covariance matrix R, as specified by the pdf (6.170).

Figure 6.33 shows the eigenspectrum of Rmod (6.206) in the n = 4-source case from the
TVAR(5) simulation experiment. Also shown are the eigenspectra of its TVAR(5) transforma-
tion and of one particular sample R̂, and the level of the EL loading βEL. We can immediately
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Figure 6.33 Detection performance of TVAR(5)-based adaptive detector with ideal false-alarm
thresholds for 50-dB INR.
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Figure 6.34 Detection performance of TVAR(5)-based adaptive detector with “white-noise”
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Figure 6.35 Eigenspectra of the TVAR(5) simulation true and sample covariance matrices for
n = 4.

observe that this loading factor is almost 30 dB above the noise floor in this case, unlike the
traditional β = 2σ2

0 .
As discussed, we compare ROCs calculated for the ideal false-alarm thresholds. Figure 6.34

shows ROCs for TVAR(5) and LAMF detectors for the scenario of 10-dB SNR in the “interim”
covariance matrix model Rmod with n point sources in white noise (6.206). Figure 6.35 repeats
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Figure 6.36 Detection performance of LAMF and TVAR(5)-based adaptive detectors for 10-dB
INR.
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Figure 6.37 Detection performance of LAMF and TVAR(5)-based adaptive detectors for 50-dB
INR.

the experiment for 50-dB SNR. The LAMF detector here adopts EL-selected loading, though
conventional loading (6.213) leads to very similar performance, despite a significant difference
in loading values β. Comparison of the introduced ROCs leads to some important conclusions.
First, we see from Figures 6.36 and 6.37 that the performance of the TVAR(5) detector (with
ideal false-alarm thresholds, as discussed above) is almost scenario-invariant (n and INR)
and is characterized by 6-dB losses. On the contrary, Figures 6.34–6.38 demonstrate that the
performance of the LAMF detector is strongly dependent on the underlying signal scenario.

The most important conclusion comes from comparing these ROCs with those in
Figure 6.36: at this relatively low INR, LAMF is superior to TVAR(5). Specifically, for EL
loading and a single source, LAMF detection losses are negligible (10.3−9.6 = 0.7 dB); even
for six sources, its losses are 14.8 − 9.6 = 5.2 dB (compared with 15.7 − 9.6 = 6.1 dB for
TVAR(5)).

Lastly, consider Figure 6.38 which are the LAMF ROCs for n = 0, 1, 2, 4, 6 and 50-dB
INR, with EL loading (6.213). For one or two interference sources, the LAMF detector is
still (potentially) better than the TVAR(5)-based one; however, for more interferers the LAMF
losses increase enormously: 10 dB for n = 4 and 20 dB for n = 6, making the LAMF detector
practically useless for such scenarios. Conventional loading (not shown here) demonstrates
very similar results.
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Figure 6.38 Detection performance of LAMF adaptive detector for 50-dB INR and EL loading.

An explanation of this behavior follows from considering the TVAR(5) eigenspectra for
four interferers in Figure 6.22. Rather than a “cliff-like” eigenspectrum, there are a quite large
number of dominating eigenvalues, which make the diagonal loading method inefficient. For
10-dB INR (not illustrated), the TVAR(5) model eigenspectrum “tail” (i.e. those eigenvalues
smaller than the fifth largest one, λ5) becomes comparable with the additive white-noise “floor,”
which makes LSMI more efficient than the TVAR(m) detector. On the contrary, at 50-dB INR,
the “tail” as seen in Figure 6.33 is still well above the “floor,” even for the last non-zero
eigenvalue λ̂10 of R̂.

This analysis demonstrates that the comparative performance of diagonally loaded versus
TVAR(m)-based adaptive detectors strongly depends on the eigenspectrum of the interference
covariance matrix, with LAMF being superior for “cliff-like” scenarios and TVAR(m) being
superior for “slope-like” scenarios. The fact that a particular interference may be exactly
described by a TVAR(m) model does not necessarily mean that for limited sample support the
TVAR(m) detector is always better. From a theoretical viewpoint, this observation reinforces
the important statement made in Reference 1 regarding the role of the ML covariance matrix
estimation criterion in the adaptive detection problem; namely that even a properly structured
ML TVAR(m) ML CME R̂m may lead to a worse detection performance than the “ad hoc”
diagonally loaded estimate. From a practical viewpoint, of course, it must be remembered that
we have compared ROCs with ideally set false-alarm thresholds, so any practical approach
may introduce additional considerations into the relative merits of the two detectors.

6.3.4 Observations
We have analyzed the performance of adaptive filters (beamformers) and adaptive detectors that
exploit the recent ML estimate of an M-variate band-inverse covariance matrix, drawn from a
set of N independent Gaussian training samples. Band-inverse Hermitian covariance matrices
describe the class of time-varying autoregressive random processes of order m, TVAR(m), and
can be used to approximate an arbitrary Hermitian covariance matrix with a “slope-like” eigen-
spectrum, which is typical of spread/scattered/distributed/broadband sources. The minimum
sample support required for ML covariance matrix estimation is just greater than the TVAR(m)
order (N > m), and so for all cases with m 	 M there is a significant reduction in sample
support, compared with the traditional SMI technique that requires N ≥ M training samples.
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The SNR loss factor with respect to the clairvoyant filter has been analyzed for adaptive
filters that are constructed from the ML TVAR(μ) covariance matrix estimate. For interferences
that arise from a TVAR(m) process, we analyzed the SNR losses due to the finite sample support
N involved in TVAR(μ) (μ ≥ m) ML covariance matrix estimation for signal scenarios with
different properties of interference and target steering vector. First, we demonstrated that
(unlike the conventional SMI technique), the strict invariance of the SNR loss factor with
respect to the true covariance matrix and signal steering vector does not exist for TVAR-based
adaptive filters.

For an adaptive MTI filter, whose M-variate steering vector has only its first element non-
zero, the SNR loss factor is exactly described by a beta distribution with parameters N and
(μ + 1). For a general steering vector, the SNR losses statistically exceed those with that
β(N , μ + 1) distribution. This leads to our suggestion of using this beta distribution as a
lower bound for SNR losses. We demonstrated that, apart from some very specific cases where
the target steering vector is practically in the clutter subspace, the SNR loss factor is mainly
determined by the same two parameters, being very insensitive to the true covariance matrix
and the (general) target steering vector. This insensitivity allows us to propose an (approximate)
upper bound, namely, the adaptive filter SNR loss factor wherein uncorrelated (white-noise)
data are used in place of the true TVAR(m) covariance matrix. Though we have not derived a
closed-form analytic pdf of the “white-noise” loss factor, the pdf can be precalculated for any
given M, N , μ, and steering vector using Monte-Carlo simulations. Our analysis showed that
this scenario-invariant upper bound in most cases only slightly overestimates the true SNR loss
factor (0.2–0.5 dB) and so is suitable for the practical assessment of TVAR(μ) adaptive filter
efficiency. Similar to the famous RMB rule N � 2M to obtain average 3-dB SNR losses, we
demonstrated that a TVAR(μ) adaptive filter and general steering vector require

N � 3μ for μ ≥ m (6.214)

training samples, which for m 	 M means a very significant sample-support reduction.
We have also analyzed adaptive detectors that are based on the ML TVAR(μ) CME, focusing

on CFAR properties and ROC performance. Similar to the SNR losses in the adaptive filters, we
showed that such detectors are not strictly CFAR, that is, in the absence of a target their output
statistics depend on the interference scenario. Yet we found that the dependence of the false-
alarm probability PFA on the true TVAR(m) (m ≤ μ) interference covariance matrix is rather
weak. We therefore suggested that, for m 	 M and μ 	 N < M, the false-alarm thresholds
can be precalculated using a white-noise equivalent interference model with an acceptable
accuracy in practical applications. In particular, for M = 128, m = 2, N = 32, and PFA =
10−4, 10−3, 10−2, we demonstrated that “white-noise”-derived thresholds produced a false-
alarm rate of about 50–80% PFA. This slight overestimation in false-alarm threshold induces
a practically negligible (� 0.6 dB) additional SNR degradation.

However, we considered another scenario (M = 32, m = 5, N = 10) where the white-
noise equivalent model provides less accurate thresholds. Among the range of these TVAR(5)
scenarios, the worst false-alarm rate overestimation reached an order of magnitude (PFA =
10−4 instead of the nominal 10−3), with an additional 2.7 dB of SNR losses. While these
losses are still less than those associated with partitioning the sample support and using one
subset for conventional scalar false-alarm threshold calculation, this example has emphasized
the need for more accurate thresholds.
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In this regard, we demonstrated that much more accurate false-alarm thresholds can be
precalculated using “bootstrap” ideas, whereby the ML TVAR(μ) CME is treated as the true
interference covariance matrix in the “bootstrap world,” in order to generate any number
of “bootstrap training data” that is then used for direct threshold calculation. Of course,
a real-time practical implementation of this algorithm is questionable, though it is possi-
ble that a derivative of this technique can perform better than the white-noise equivalent
model.

We have studied TVAR(μ)-based adaptive filters and detectors of an arbitrary order μ ≥ m
mainly to investigate the SNR losses associated with order overestimation. We demonstrated
that modest order overestimation leads to a considerable (but not catastrophic) SNR and detec-
tion performance degradation in the adaptive filters and detectors, respectively. At the same
time, the fact that a previous paper of ours demonstrates an extremely high order-estimation
accuracy, such losses can be ignored in all scenarios considered in this section.

Finally, for truly TVAR(m) interferences, we conducted a comparative performance anal-
ysis of LAMF and TVAR(m) adaptive detectors. This analysis used true false-alarm thresh-
olds to calculate ROCs, and so reflects potential detection performance rather than practi-
cal performance. Our study showed that, even for TVAR(m) interferences, the question of
which detector is better strongly depends on the eigenspectrum of the interference covari-
ance matrix. For our TVAR(5) interference scenario and n = 1 or 2 interferers, with its “cliff-
like” eigenspectrum (where dominant eigenvalue “leakage” is comparable with the white-
noise floor), LAMF is superior to the TVAR(5)-based detector. On the contrary, for the
TVAR(5) scenario and n = 4 or 6 interferers, with a strongly “slope-like” eigenspectrum
(m = μ = 5, N = 10, where even the N th eigenvalue is still well above the noise floor), the
situation is reversed, with LAMF having 14-dB losses with respect to the TVAR(m) detec-
tor. The fact that a particular interference scenario is exactly described by a TVAR(m) model
does not necessarily mean that the TVAR(m) detector is always better than the diagonally
loaded one. This paves the way for a new hybrid detection scheme for practical applica-
tions that adaptively selects between the LAMF and TVAR(μ) detectors. When properly
applied, both techniques yield a very significant detection performance improvement com-
pared with the AMF detector that uses the conventional sample CME with more than M training
samples.

We mention that dedicated logic circuitry for the practical implementation of the TVAR(μ)-
based adaptive filter has already been developed by Lekhovytskiy et al. [64] as the “universal
adaptive lattice filter,” which ensures this technique is readily implementable.

6.4 Improving Adaptive Detection Using Data Partitioning
In many cases, the CFAR detectors introduced in Section 6.1, such as the AMF and GLRT
detectors, cannot be used and/or can be achieved by some other design with potentially a
significantly smaller sample-support requirement. Indeed, it was recently demonstrated [75]
that for real radar clutter data, all known CFAR receivers (detectors) “do not respect their
nominal probability of false alarm, namely they exhibit a false alarm rate higher than the
value preassigned at the design stage.” The significant power mismatch (inhomogeneity) of
the training data collected over different range cells was considered in Reference 75 to be
the main reason for this mismatch between predicted and actual false-alarm rate, while other
“second-order factors,” such as a possible statistical dependence among the secondary vectors



240 CHAPTER 6 • Adaptive Radar Detection for Sample-Starved Gaussian Training

(see also Reference 76), contribute to a further deviation of the observed false-alarm rate from
the theoretical value.

Furthermore, in a number of applications, the CFAR properties of adaptive detectors cannot
be used, even theoretically, when some discrepancy between the training and primary data are
involved. Such discrepancies can arise, for example, when an adaptive antenna is used for
external-noise (jamming) mitigation only, while the actual target detection is performed at the
output of coherent Doppler processing that is applied for clutter rejection. Generally a small
number of training range and/or Doppler cells that are free of clutter and targets (perhaps
being collected during a time interval free of radar transmission) is used for interference
CM estimation. The resultant adaptive antenna array (beamformer) is then applied across the
operationally important (primary) range and Doppler cells in order to mitigate this interference.
Target detection is then performed on the surface clutter background usually using non-adaptive
clutter suppression/detection techniques, such as coherent Doppler processing. An important
feature of such an application is that the sample data train the adaptive beamformer for external-
noise mitigation but does not represent the entire background interference that a target must
be finally discriminated against.

Another example has been reported in References 23 and 77, where a different INR (not just
scaling) over the training and primary datasets leads to a considerable loss of “CFARness.”
Importantly, in most such cases this difference does not significantly degrade the adaptive
antenna’s ability to reject this interference; it is the invariance of the loss factor and the CFAR
property that are lost. A final example is the non-CFAR “robust adaptive detector,” that is
designed to reduce the impact of target model mismatch [22]. In all these examples, the pdf
“tails” of the detector output statistics are sensitive to mismatches between the model used for
deriving the CFAR properties and the true parameters.

In each of the above-mentioned adaptive detectors, the loss of “CFARness” just means
that the problem of adaptive interference mitigation and the problem of adaptive false-alarm
threshold control must be treated separately: the secondary (training) data should be used to
achieve efficient interference mitigation, while the adaptive thresholding should use the stan-
dard “cell-averaging” approach over a number of adaptively processed primary range/Doppler
cells, as proposed by Kalson [78]. This very established adaptive threshold (CFAR) control
was introduced by Finn and Johnson (FJ) [11] and modified in numerous subsequent studies
(e.g. [79–81]). Of course, the training cells and the processed primary range/Doppler cells
involved in adaptive thresholding should be sufficiently homogeneous, but the number of such
cells required to maintain a certain loss factor (with respect to the clairvoyant threshold) does
not depend on the dimension of the adapted system [11].

For the above-mentioned applications with different interference properties over the sec-
ondary and primary data, this two-stage adaptive processing scheme seems to be the only
viable adaptive detection option. Yet a similar two-stage approach may be considered as an
alternative to CFAR adaptive detectors, even for the homogeneous training conditions that are
typically considered for classic one-stage CFAR detector design. In this classic approach, con-
sider the typical scenario addressed in References 5 and 40 where the training sample and the
single primary sample being tested contain the same interference (at least up to a scalar factor).
Here CFAR adaptive detectors, in the absence of a target, have invariant output statistics (i.e.
pdf) with respect to the interference covariance matrix. This means that different primary cells
may be corrupted by interferences with different covariance matrices, but unless each primary
cell has correspondingly different training data, the pdf of the output statistics (and hence the
false-alarm rate) are the same for all these cells that are processed by different adaptive filters.
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In practice this means that, for the “sliding window” approach (where a template compris-
ing a fixed number of cells neighboring the tested cell moves across all resolution cells), the
false-alarm threshold and false-alarm rate remain the same for all tested cells. Naturally, each
resolution cell is processed by a different adaptive detector that is constructed from a different
CME that comes from a cell-specific set of training data.

An alternative approach to this method would be to consider, for each tested resolution cell
with N sufficiently homogeneous training samples, a similar two-stage adaptive process as for
the above applications with severely non-homogeneous training data. Specifically, the set of
N i.i.d. training samples allocated for any single primary range cell is divided into two sets,
NCME and NCFAR, the former is used for interference CM estimation to design the adaptive
beamformer/filter/antenna, then the latter set is used to estimate the signal statistics (power in
the Gaussian case) at the output of this adaptive antenna (i.e. adaptive scalar CFAR design). It
is important to understand that this adaptive CFAR threshold is therefore specifically designed
for a particular adaptive beamformer, and if different primary cells are to be processed by
different filters, then different thresholds must be used. In practice, of course, we may have
an intermediate case where some number of adjacent primary cells are processed by the same
filter/detector.

Clearly, any analytical derivations for receiver operating characteristics (ROCs) for such
a two-stage adaptive detection scheme also describe the above-mentioned non-homogeneous
training applications provided that NCME is the secondary training volume used to design the
adaptive beamformer, and NCFAR is the number of sufficiently homogeneous primary cells
used for adaptive thresholding. In these “non-homogeneous” applications, NCME and NCFAR

cannot be traded-off against each other, since these two sets of training data contain different
interference.

For homogeneous training conditions, two-stage adaptive processing design raises an
important question: given a limited number N of i.i.d. training samples, what is the best type
of CME to use, and what is the optimal partition {NCME , NCFAR}? The answer does not seem
to be obvious. At one extreme, we can use all of the training data to get the conventional ML
CME and rely upon the scenario-invariant properties of the GLRT/AMF/ACE detector output
statistics. The difficulty here, as discussed, is that strict invariance can be achieved only when
N exceeds the dimension of the antenna array (number of sensors) M and that detection losses
considerably exceed the RMB [7] SNR degradation of 3 dB for N � 2M.

Since the required NCFAR does not depend on the antenna dimension M, any adaptive
antenna (filter) technique that for efficient interference mitigation requires a significantly
smaller sample support than the conventional ML CME (LSMI or FML as discussed in Sec-
tion 6.2, for example) will lead to a more efficient two-stage detector than any of the CFAR
GLRT/AMF/ACE detector (for a sufficiently large antenna/filter dimension M). On the con-
trary, if a particular CME gives rise to (at least) the “practical” CFAR property, then the
two-stage detection scheme that uses the same estimate may be inferior to the “one-stage”
(practically) CFAR detector, even for the optimal partition {NCME , NCFAR}. Still, if this degra-
dation is relatively small, then even a modest reduction in NCME that is provided by a more
efficient (but non-CFAR) CME should result in superior detection performance. An investiga-
tion of this trade-off is presented in this subsection. A comparative analysis of the “one-stage”
CFAR AMF and GLRT detectors are well described in Reference 5, so it is sufficient for us to
compare just one of them with our new detectors.

We shall compare ROCs for the CFAR AMF detector, the two-stage detector that adopts
the same conventional ML CME (with sample size not less than M), the “practically CFAR”
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(one-stage) LSMI detector for the “cliff-type” scenario (6.6), and the two-stage LSMI detector
for the same scenario. We expect that a comparison of (one-stage) AMF and the two-stage
LSMI detectors will demonstrate the detection performance improvement discussed above,
which is associated with the more efficient loaded CME, even in the case where the output
statistics (pdf) invariance is ignored or is non-existent. Comparison of (practically) CFAR
and the two-stage detectors that use the same CME (conventional ML or diagonally loaded)
will give an insight into the gains associated with exploiting (practical) invariance. Section
6.4.1 provides analytical expressions for the ROCs of the various detectors, then Section 6.4.2
introduces the results of calculations and Monte-Carlo simulations.

6.4.1 Analysis Performance of “One-Stage” Adaptive CFAR
Detectors versus “Two-Stage” Adaptive Processing

We consider a scenario with a fluctuating target (Swerling I model) masked by interference of
type (6.6). The primary sample y is described as

y =
{

x0 ∼ CN (0, R) for hypothesis H0

x0 + as, a ∼ CN (0, σ2) for hypothesis H1
(6.215)

where x0 is the observed M-variate interference-only data vector (snapshot), CN (0, R) is
the complex (circular) Gaussian pdf, s is the M-variate normalized (s†s = 1) array-signal
(“steering” or wavefront) vector, and a is the complex target amplitude (whose power is σ2).
The unknown covariance matrix R is estimated using the set of N i.i.d. training samples

[x1, . . . , xN ], xj ∼ CN (0, R), j = 1, . . . , N . (6.216)

6.4.1.1 “Benchmark” Detectors (A, B, C, D)

6.4.1.1.1 Detector A: Clairvoyant Detector
We first identify the benchmark detection performance for this model. The ultimate perfor-
mance is achieved by the clairvoyant receiver (detector), which comprises the optimal/Wiener
filter

wopt = R−1s
s†R−1s

(6.217)

followed by the detector

|y†R−1s|2
s†R−1s

H1
>
<
H0

h > 1 (6.218)

where H0 and H1 are, respectively, the hypotheses that no target or a target is present, and h is
the false-alarm threshold, then the target-free signal at the output of the filter has the distribution
CN (0, 1). The ROC curve of this clairvoyant detector is described by the well-known analytic
expression for the probability of detection

Pd = exp

[
−| ln PFA|

1 + q2

]
(6.219)
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where

q2 = σ2s†R−1s (6.220)

is the output SNR of the filter.

6.4.1.1.2 Detectors B and C: Adaptive SMI/LSMI Filter with Ideal Thresholding
For an unknown true covariance matrix R, the conventional ML CME is

R̂ = 1

N

N∑
j=1

xjx
†
j , N ≥ M (6.221)

whereas the LCME is

R̂β ≡ R̂ + βIM , β = (2 ∼ 3) × λM , λM = σ2
0 (6.222)

where σ2
0 is the additive white-noise power. The detectors B (Adaptive SMI) and C (Adaptive

LSMI) are then specified, respectively, by

|y†R̂
−1

s|2
s†R̂

−1
RR̂

−1
s

H1
>
<
H0

h > 1,
|y†R̂

−1
β s|2

s†R̂
−1
β RR̂

−1
β s

H1
>
<
H0

h > 1. (6.223)

In the famous RMB paper [7], the pdf for the SNR losses ρ in the adaptive filter w = R̂
−1

s
compared with those of the clairvoyant Wiener filter (6.217)

ρ = (s†R̂
−1

s)2

(s†R̂
−1

RR̂
−1

s)(s†R−1s)
(6.224)

was derived as

f (ρ) = 1

B[s, n]
ρs−1(1 − ρ)n−1, (6.225)

with

s = N − M + 2, n = M − 1 (6.226)

where B[s, n] is the beta function [42]. In Reference 13, it was shown that for LSMI with the
diagonal loading factor (6.222) and for scenarios whose covariance matrix is of the form (6.6),
the SNR loss factor

ρβ = (s†R̂
−1
β s)2

(s†R̂
−1
β RR̂

−1
β s)(s†R−1s)

(6.227)

with wβ = R̂
−1
β s, is described with high accuracy by the same beta distribution (6.225), but

with the parameters

s(β) = N − m + 2, n(β) = m − 1. (6.228)
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If the losses associated with adaptive thresholding are ignored (i.e. the number NCFAR

of i.i.d. samples used for adaptive thresholding approaches infinity), which means that the
target-free output power of the specific adaptive filter w or wβ is known exactly in (6.223):

σ2
out(w) = s†R̂

−1
RR̂

−1
s

(s†R̂
−1

s)2
, or σ2

out(wβ) = s†R̂
−1
β RR̂

−1
β s

(s†R̂
−1
β s)2

, (6.229)

then the probability of detection is

Pd = 1

B[s, t]

∫ 1

0
exp

[
−| ln PFA|

1 + q2x

]
xs−1(1 − x)t−1 dx. (6.230)

For s and t given by (6.226) (detector B), we get the detection probability for the conventional
ML sample estimate-based detector, while for s(β) and t(β) given by (6.228) (detector C),
we get the detection probability for the LSMI-based detector. Whereas expression (6.230) is
well suited for numerical integration, in Appendix A of Reference 2, we derive the analytic
expression for this integral:

Pd = PFA

(1 + q2)s
�1

(
s, s + t, s + t;

q2

1 + q2
,

q2| ln PFA|
1 + q2

)
(6.231)

where �1(a, b, c; w, z) is the confluent (degenerate) hypergeometric series in two variables
[42]. This performance accounts for the two benchmark detectors when NCME = N and
NCFAR → ∞.

6.4.1.1.3 Detector D: Optimal/Wiener Filter with Scalar Adaptive CFAR
Finally, another extreme case gives us another benchmark for performance comparison: when
the covariance matrix is known (at least up to a scalar factor) and conventional CFAR thresh-
olding is applied with all N samples used for output power estimation:

|y†R−1s|2
s†R−1R̂R−1s

H1
>
<
H0

h > 1 (6.232)

The probability of detection associated with the finite sample volume N here is well known [11]:

Pd =
[

1 + 1 − P1/N
FA

(1 + q2)P1/N
FA

]−N

. (6.233)

This performance accounts for the benchmark detector when NCME → ∞ and NCFAR = N .
Thus we have the ROC curve expression for the clairvoyant benchmark, as well as for

detection performance of adaptive detectors with ideal thresholding or ideal Wiener filtering.
We next introduce ROC formulas for the practical (one-stage) AMF and “two-stage” adaptive
detectors.
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6.4.1.2 “One-Stage” Adaptive Detectors (E, F)

6.4.1.2.1 Detector E: (One-Stage) CFAR AMF Detector
This detector is specified by [5]

|y†R̂
−1

s|2
s†R̂

−1
s

H1
>
<
H0

h > 1, R̂ = 1

N

N∑
j=1

xjx
†
j . (6.234)

Let τ ≡ N − M + 1, then the false-alarm rate of this detector is [1]

PFA = (1 + h)−τ
2F1

(
τ, M − 1, N + 1;

h

1 + h

)
(6.235)

where 2F1(α, β, γ; x) is the hypergeometric function in one variable [42]. The probability of
detection is [1]

Pd = N !
τ!(M − 2)!

∫ 1
1+q2

0

xτ[1 − (1 + q2)x]M−2

(1 + hx)τ(1 − q2x) N+1
dx (6.236)

=
[

1 + q2

1 + q2 + h

]τ

F1

(
M − 1, τ, −τ, N + 1;

q2 + h

1 + q2 + h
,

q2

1 + q2

)
(6.237)

where F1(α, β, β′, γ; x, y) ≡ F1(α, β′, β, γ; y, x) is the hypergeometric function in two variables
[42].

6.4.1.2.2 Detector F: (One-Stage) “Practically CFAR” LAMF Detector
This detector was introduced in Reference 1 similar to the above AMF detector.

tF ≡ |y†R−1
β s|2

s†R−1
β s

H1
>
<
H0

h > 1, Rβ = R̂ + βIM , β = (2 ∼ 3) × σ2
0 . (6.238)

Unfortunately no analytic expressions have yet been derived for PFA and Pd . However, in
Reference 1 we demonstrated that the “practically CFAR” probability of false-alarm of this
detector may be precalculated using the approximate representation of the output statistics
(provided that λm/λM � 1):

tF �
∣∣[x†

n − xm(ZmZ†
m)−1ZmZ†

n]Ze
∣∣2

e†Ze
(6.239)

where n ≡ M − m, e ≡ [1, 0, . . . , 0]N , and

Z ≡
{
βIn + 1

N
Zn

[
IN − Z†

m(ZmZ†
m)−1Zm

]
Z†

n

}−1

(6.240)

Zm ∈ Cm×N ∼ CN N (0, Im), Zn ∈ Cn×N ∼ CN N (0, In) (6.241)

xm ∈ Cm×1 ∼ CN (0, Im), xn ∈ Cn×1 ∼ CN (0, In) (6.242)

and the Zm, Zn, xm, xn are all mutually independent.
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We can see that PFA is specified by “white-noise” random values and is a function only
of M, N , m, and β. Actual probabilities of detection are evaluated in Reference 1 by direct
Monte-Carlo simulations.

6.4.1.3 “Two-Stage” Adaptive Detectors (G, H) [78]

6.4.1.3.1 Detector G: Conventional SMI Adaptive Filter and Scalar CFAR Detector
(“Two-Stage” AMF)

The two-stage detector that uses the conventional (unloaded) CME R̂ is

|y†R̂
−1
CMEs|2

s†R̂
−1
CMER̂CFARR̂

−1
CMEs

H1
>
<
H0

h > 1 (6.243)

where

R̂CME = 1

NCME

NCME∑
j=1

xjx
†
j , R̂CFAR = 1

NCFAR

N∑
j=NCME+1

xjx
†
j . (6.244)

(Note that when the samples are homogeneous, their ordering is arbitrary.) In Appendix B of
Reference 2, we derive the following expressions:

PFA = (1 + h)−NCFAR (6.245)

and

Pd = (NCME + 1)

(NCME − M + 2)(M − 1)

∫ 1

0

[
1 + q2x

1 + q2x + h

]NCFAR

xNCME−M+1 (1 − x)M−2 dx

(6.246)

=
[

1 + q2

1 + q2 + h

]NCFAR

F1

(
M − 1, NCFAR, −NCFAR, NCME + 1;

q2

1 + q2 + h
,

q2

1 + q2

)
.

(6.247)

Note the similarities between (6.237) and (6.247) (for NCFAR = τ ≡ N − M + 1) and the
distinctions between (6.235) and (6.245).

6.4.1.3.2 Detector H: LSMI Adaptive Filter and Scalar CFAR Detector
(“Two-Stage” LAMF)

The expressions for the corresponding diagonally loaded two-stage detector

|y†R̂CME(β)−1s|2
s†R̂CME(β)−1R̂CFARR̂CME(β)−1s

H1
>
<
H0

h > 1 (6.248)

R̂CME(β) = R̂CME + βIM (6.249)

are

PFA = (1 + h)−NCFAR (6.250)
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and

Pd =
[

1 + q2

1 + q2 + h

]NCFAR

F1

(
m − 1, NCFAR, −NCFAR, NCME + 1;

q2

1 + q2 + h
,

q2

1 + q2

)
.

(6.251)
We are now in a position to compare numerical results for these eight detectors.

6.4.2 Comparative Detection Performance Analysis
Consider the scenario that was recently analyzed in Reference 1; a 12-sensor uniform linear
antenna array that observes a total of only 24 training data samples:

M = 12, m = 6, N = 24 = 2M. (6.252)

The covariance matrix for m = 6 interference sources is

R =
6∑

k=1

σ2
k s(θk)s†(θk) + σ2

0 IM (6.253)

σ2
0 = 1, σ2

1 = · · · = σ2
6 = 1, 000 (6.254)

sin θ = [−0.8, −0.4, 0.2, 0.5, 0.7, 0.9] (6.255)

(our target is located at sin θ0 = −0.6). We see that this scenario meets the “favorable”
conditions of (6.6) for the application of the LSMI technique, since λ6/λ7 = λ6/λ12 � 40 dB.

In what follows, most of our figures are split across two subfigures because the number of
ROC curves is large; we retain ROCs for detectors A and D as common reference curves in
both, and display results for detectors that use conventional CMEs in subfigure (a), with those
that use loaded CMEs in subfigure (b).

We begin with the clairvoyant detector A (6.218) whose ROC curve is given analyti-
cally by (6.219) (see Figure 6.39, curve labeled “A [ideal + ideal] *”; the asterisk indicates
curves/detectors that are independent of partitioning, while the square brackets signify imprac-
tical detectors). Note that for the same scenario, in Reference 1 we also calculated this ROC by
direct Monte-Carlo simulations for validation reasons. The perfect correspondence seen there
between analytic and simulated results proved the sufficient accuracy of the Monte-Carlo set-
ting (i.e. number of trials for false-alarm and detection probability calculations) that is also
adopted in this subsection.

Figure 6.39 also reproduces from Reference 1 the ROCs of the conventional AMF detector
(E), labeled “simulated E”, again calculated by Monte-Carlo simulations; now we augment
this with the analytic formula (6.237), labeled “E (CFAR AMF) *.” This theoretical curve
makes use of the GSL software routine gsl_sf_hyperg_2F1 [82] to calculate the function
2F1(α, β, γ; x) in order to compute the false-alarm threshold h for PFA = 10−4, followed by
the Matlab routine quad to numerically evaluate the integral that defines the probability of
detection. (For some scenarios, this “E” curve could not be calculated for high SNRs because of
numerical computation issues with the routine quad.) The accuracy of numerical calculations
was verified by the condition Pd = PFA for q2 = 0. Again we observe ideal correspondence
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Figure 6.39 ROCs for the optimum partition for conventional CME, 12 sensors, 6 interferers,
and 24 snapshots.

between the analytical and “experimental” ROCs for detector E, which demonstrates the accu-
racy of the computations and the Monte-Carlo simulations. The two curves so far described
(A and E) are well known, and so it is with no surprise that we observe a familiar AMF loss
factor of 4.75 dB at Pd = 0.5 and PFA = 10−4 for the conventional ML sample covariance
matrix estimate that involves all N = 24 snapshots.

The remaining curves in Figure 6.39(a) are the ROCs for the two benchmark detectors B
(6.230) and (6.226) (conventional-CME beamformer with ideal thresholding) and D (6.233)
(ideal receiver with scalar CFAR), and finally detector G (conventional SMI filter with scalar
CFAR).

Figure 6.39(b) repeats benchmark curves A and D and adds ROCs for the loaded-CME
detectors C (6.230) and (6.228), F and H (6.251). The ROC for the “practically CFAR” LAMF
detector F is reproduced from Reference 1, again calculated by Monte-Carlo simulations, for
the loading factor β = 2.5.

The particular partition {NCME , NCFAR} = {17, 7} used in Figure 6.39 was found (by
exhaustive search) to be optimal for the conventional-CME detector G, i.e. resulted in the
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Figure 6.40 ROCs for the optimum partition for loaded CME, 12 sensors, 6 interferers, and
24 snapshots.

minimum SNR loss at Pd = 0.5 for detector G compared with the ideal detector A, in this case
7.45 dB. Of course, for a proper comparison, we use 17 snapshots for the adaptive beamformers
B and C, and seven snapshots for adaptive thresholding in D. For the reader’s convenience, the
following list details the various possible sample-support partitions.

Figure 6.39(a) conventional CME Figure 6.39(b) loaded CME
A: NCME → ∞, NCFAR → ∞ A: NCME → ∞, NCFAR → ∞
B: NCME = 17, NCFAR → ∞ C: NCME = 17, NCFAR → ∞
D: NCME → ∞, NCFAR = 7 D: NCME → ∞, NCFAR = 7
E: N = NCME + NCFAR = 24 F: N = NCME + NCFAR = 24
G: NCME = 17, NCFAR = 7 H: NCME = 17, NCFAR = 7

Figure 6.40 shows, in the same format, ROCs for the same eight detectors but for the partition
optimized for SNR losses in the loaded-CME detector H at 50% detection probability, namely
{NCME , NCFAR} = {13, 11} resulting in 3.95 dB.
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 T = 24, TCME = 17, TCFAR = 7, M = 12, m = 3, PFA = 10−4  
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Figure 6.41 ROCs for the optimum partition for conventional CME, 12 sensors, 3 interferers,
and 24 snapshots.

Before commenting on these results in detail, we shall introduce the remaining figures. For
the same antenna array setting (M = 12, N = 24), Figures 6.41 and 6.42 show ROCs in a
similar format for m = 3 dominant interferers (instead of six). Since the RMB [7] loss factor
(6.225) and (6.226) for SMI does not depend on scenario, we naturally find the same optimal
partition for conventional CME as in Figure 6.39. While the ROCs in Figure 6.41(a) therefore
repeat those in Figure 6.39(a), we retain this subfigure for convenience of comparison. Apart
from curves A and D in Figure 6.41(b), of course, the other two ROCs are different from those
(loaded-CME detectors) in Figure 6.39(b), despite the same partitioning, due to the reduced
number of interference sources.

The search for the optimal partitioning of sample support for (the loaded-CME) detector
H here leads to {NCME , NCFAR} = {10, 14}, as shown in Figure 6.42(b). Since NCME = 10 is
less than the antenna array dimension M = 12, it is not possible to utilize conventional-CME
detectors. For this reason, we instead introduce in Figure 6.42(a) ROCs for the conventional-
CME detectors at their minimum possible partition {NCME , NCFAR} = {12, 12}.
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Figure 6.42 ROCs for 12 sensors, 3 interferers, and 24 snapshots for (a) the smallest possible
sample support for conventional CME, and (b) the optimum partition for loaded
CME.

In the same format, Figures 6.43 and 6.44 show results for an M = 10-sensor antenna
array, N = 50 snapshots, m = 3 interferers, and false-alarm probability PFA = 10−6, which
are the same scenario studied in References 4 and 5.

These results allow us to perform the following comparative analysis:

(1) (one-stage) CFAR AMF detector versus (one-stage) “practically CFAR” LAMF detector,
i.e. curve E versus F;

(2) (one-stage) CFAR AMF detector versus two-stage AMF detector with the same conven-
tional CME, for different partitions, i.e. curve E versus G;

(3) (one-stage) “practically CFAR” LAMF detector versus two-stage LAMF detector with
the same loaded CME, for different partitions, i.e. curve F versus H;

(4) optimal partitions for two-stage AMF and LAMF detectors, i.e. curves G and H;

(5) most importantly, one-stage CFAR AMF detector versus optimally partitioned two-stage
LAMF detector, i.e. curve E versus H.
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Figure 6.43 ROCs for the optimum partition for conventional CME, 10 sensors, 3 interferers,
and 50 snapshots.

First, as already seen, Figure 6.39(a) shows a 4.75-dB SNR degradation in the standard
AMF detector (E) compared with the ideal (A); this figure is in agreement with Reference 5.
Figure 6.39(b) reveals that the one-stage practically CFAR LAMF detector (F) has a loss of
only 1.73 dB. Therefore, when the “practically CFAR” properties of the LAMF detector are
sufficiently accurate and properly exploited, we find that it has a significant performance
improvement over the traditional AMF detector [1].

Note that the mean SNR improvement due to diagonal loading of the covariance matrix
estimate, as described by (6.225) and (6.228), is only 1.55 dB. An additional 1.5-dB SNR
improvement seen in the ROCs may be attributed to the significantly different pdfs of the
AMF and LAMF detector outputs (the LAMF one “fluctuates less” [1]).

Second, a comparison of the traditional one-stage AMF detector (E) with the two-stage
AMF detector (G), which uses the same unloaded CME, demonstrates that even for the
conventional-CME optimum {NCME , NCFAR} = {17, 7} in the case of Figure 6.39, the one-
stage AMF detector is superior to the two-stage one, by the amount of 7.45 − 4.75 = 2.70 dB.
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Figure 6.44 ROCs for the optimum partition for loaded CME, 10 sensors, 3 interferers, and 50
snapshots.

According to (6.225) and (6.226), the sample-support reduction from N = 24 to N = 17
causes a 1.5-dB SNR degradation, hence an additional 1.2-dB degradation must be due to the
very limited sample volume N = 7 used for adaptive threshold estimation.

Third, we similarly find that the one-stage LAMF detector (F) remains superior to the
two-stage LAMF detector (H), even for the loaded-CME optimal partition {NCME , NCFAR} =
{13, 11} of Figure 6.40, by the amount of 3.95 − 1.73 = 2.22 dB. According to (6.225) and
(6.228), the sample-support reduction from N = 24 to N = 17 in the LAMF adaptive filter
causes about 1-dB SNR degradation, so that a further 1.2-dB loss is due to the N = 7 finite-
sample support in the second CFAR stage of the detector. Note that the same losses (1.2 dB)
as above, which are associated with the seven snapshots used for output power (adaptive
threshold) estimation, are not a surprise, since the conditional pdf describing the output of
these two-stage detectors is the same (exponential in this case).

Therefore, all the above-analyzed detectors, which rely on the ideal (AMF) or “practical”
(LAMF) CFARness, gain against the two-stage alternatives that adopt the same CME. SNR
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Figure 6.45 Difference between the performance of detectors B and D for the Figure 6.39 scenario
as the partitioning varies; the optimal partition is NCME = 17.

degradations seen here are due to two reasons: a decreased sample volume (and hence a
decreased efficiency of interference mitigation in the adaptive filter/antenna) and a very small
sample volume allocated for adaptive threshold evaluation. Our crude analysis, based on the
beta-distribution (6.225) with (6.226) and (6.228), shows that the impact of these two causes
are about the same for the partitioning {NCME , NCFAR} = {17, 7}.

The introduced results on our impractical “benchmark” detectors provide an additional
important insight into the nature of the optimal partitioning, both for conventional and for
loaded CME (detectors G and H, respectively). As we already expected, for conventional CME
the SNR losses associated with finite sample support in covariance matrix estimation (RMB
losses) and the losses associated with finite sample support in adaptive threshold estimation (FJ
losses) are both found to be independent of scenario (in particular, the number of interferers m).
On the other hand, an examination of the ROCs for the “complementary” benchmark detectors
B and D (in the sense that B has ideal thresholding NCFAR → ∞, while D has ideal filtering
NCME → ∞) for conventional-CME optimal partitions against non-optimal partitions leads to
the following important observation. The difference in SNR losses between detectors B and
D at Pd = 0.5 for each of our figures is 1.21 dB and 5.43 dB, 1.21 dB and 7.41 dB, 0.23 dB
and 1.95 dB, respectively (the first figure in each pair corresponds to the conventional-CME
optimal partition, while the second is for a non-optimal partition). Figure 6.45 shows that the
optimal partitioning occurs close to where the RMB losses equal the FJ losses. This observation
leads us to the realization (of an intuitively expected fact) that the loss factor for detector G
is equal to the sum of the losses for the benchmark detectors B and D to a surprisingly high
accuracy:

(G − A) � (B − A) + (D − A) (6.256)

in notational terms.
The analogous result for the loaded case is also true:

(H − A) � (C − A) + (D − A). (6.257)
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These properties suggest a simple approach for partitioning the available N training samples
for the two-stage LAMF detector H (if we are prepared to use this detector instead of the
“practically CFAR” detector F for the scenario in question). For the “cliff-type” interference
eigenspectrum (6.6) considered in this study, the estimate of the number of dominant sources
m is accurate whenever N > m. Therefore the sample support N may first be used to estimate
m, then the beta distribution (6.225) and (6.228) may be used to find a NCME that results in
an average SNR loss factor (6.227) that is the same as the FJ loss for NCFAR samples. We
have already seen that the optimal sample support NCME in the two-stage LAMF detector (H)
is proportional to m, unlike the support required for efficient interference mitigation in the
traditional AMF detector (E) that is proportional to M.

Fifth, the most important result of this study is demonstrated by comparing E and H; for
the scenario with M = 12 and N = 24 we got SNR losses (with respect to the ideal detector)
for the optimal partitions:

One-stage AMF (E) Two-stage LAMF (H): NCME NCFAR

m = 6 3.95 dB 13 11

} 4.75 dB
m = 3 2.42 dB 10 14

It is important to note that, according to References 13 and 14, N � 2m data samples are
required to obtain average 3-dB losses when using the LSMI technique, irrespective of M.
Hence these first two scenarios with M/m = 2 and M/m = 4 are not as favorable for revealing
LSMI improvement over SMI as they would be for a higher ratio.

Finally, we consider more carefully the scenario studied in References 4 and 5 (Figures 6.43
and 6.44). In this case, the conventional-CME optimal partition is {NCME , NCFAR} = {28, 22}
while the loaded-CME optimum is {NCME , NCFAR} = {18, 32}. According to References 4
and 5, the traditional AMF and GLRT detectors in this case have a loss factor between 1.7
and 1.9 dB, which is in good agreement with our calculated 1.72 dB for detector E. For the
loaded-CME optimum, the two-stage LAMF detector (H) has 1.47-dB losses, which is an
improvement over the AMF detector, especially as there is a small range in losses for all
detectors here. Most importantly, for a fixed number of dominant interferers m, the two-stage
LAMF detector (H) will have exactly the same performance for an arbitrarily large antenna
array, whereas for M = 20 sensors, a GLRT detector would require N = 100 snapshots to
achieve equal performance as for M = 10 and N = 50 [4].

6.4.3 Observations
In this section, we considered the problem of adaptive detector performance under very limited
training support, when additional a priori information on the interference properties allows
much better covariance matrix estimation than just the direct sample matrix, but at the expense
of losing the CFAR property. To make use of such efficient (but non-CFAR) CMEs for adap-
tive detectors, some portion of the available training data are taken from covariance matrix
estimation and used instead for evaluating the false-alarm threshold. To investigate a trade-off
between these two competing systems, we have analyzed a number of “benchmark” and practi-
cal “one-stage” (CFAR) and “two-stage” adaptive detectors with very limited training-sample
support.
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For the Swerling I (fluctuating target) model and a fixed number of dominant interferers
in white noise, this section compares the performance of the four “benchmark” (impractical)
detectors:

1. clairvoyant,

2. adaptive SMI filter with ideal thresholding,

3. adaptive LSMI filter with ideal thresholding,

4. optimal/Wiener filter with scalar adaptive CFAR,

and the four practical detectors:

1. (one-stage) CFAR AMF [5],

2. (one-stage) “practically CFAR” LAMF [1],

3. “two-stage adaptive SMI + adaptive threshold” (two-stage AMF),

4. “two-stage adaptive LSMI + adaptive threshold” (two-stage LAMF),

under the condition of fixed total training sample size.
Most of the relevant ROCs have been analytically derived, while the demonstrated accurate

agreement between the analytically derived and the Monte-Carlo ROCs tends to validate the
ROC (for the “practically CFAR” LAMF detector) calculated by Monte-Carlo simulations
only.

The first important conclusion is that in all considered cases, when the “strict” or “practical”
CFAR property arises from the detector design, such (one-stage) CFAR detectors are found
to be better than the corresponding two-stage detection schemes that use the same covariance
matrix estimate. In other words, the traditional one-stage CFAR AMF detector is always
better than the two-stage method comprising adaptive SMI and adaptive thresholding (two-
stage AMF), though the relative loss factor can be reasonably small (see the M = 10, N =
50 case in Figure 6.43(a) where G–E is only 1.36 dB). Similarly for scenarios where we
can precalculate the false-alarm threshold with sufficiently high accuracy (by estimating the
number of dominant interferers), “practically CFAR” LAMF detectors are better than the
two-stage detection schemes that use the same diagonally loaded CME.

At the same time, we found that two-stage LCME detectors outperform conventional one-
stage AMF detectors, even for scenarios with relatively many strong interferers (m � M/2).
We demonstrated that the optimal partition of a given total number of training samples N into
covariance matrix estimation (NCME) and scalar CFAR (NCFAR) subsets satisfies an intuitively
expected condition: the optimum occurs when the losses associated with adaptive thresholding
(only) are about the same as those for CME only (i.e. with ideal thresholding) and that the
total loss factor can be accurately estimated as the sum of these two losses. Most importantly,
for a given number of interferers, the required sample support does not depend on the antenna
array dimension M and therefore the gain that such an adaptive detection scheme provides
with respect to CFAR AMF increases with M.

For antenna arrayed radar systems with many more sensors than the number of dominant
interferers (M � m), this saving in sample support is crucial. Moreover, the two-stage detection
schemes considered here do not rely upon any CFAR properties of the detector, that in most
practical applications are not invariant (due to the various mismatches). In addition, two-
stage detection schemes pave the way for even more efficient covariance matrix estimates (in
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terms of sample-support requirements), when additional reliable information on the admissible
covariance matrix structure is available (centrosymmetric, Toeplitz, AR(m), ARMA(m), etc.).

In Section 6.3, we demonstrated that for interferences with autoregressive properties
and hence “non-cliff-like” eigenspectra, the parametric time-varying autoregressive model
TVAR(m) gives a significant improvement in the interference mitigation efficiency of adaptive
filtering with sample support comparable with the model order m, rather than with the filter
(antenna) dimension M (m 	 M). We also showed that TVAR(m)-based AMF detectors are
“practically CFAR” under certain conditions, so that the false-alarm threshold can be precal-
culated with acceptable accuracy, similar to LAMF detectors. In some cases, however, the
required/desired accuracy is not achieved, so that the two-stage adaptive detector analyzed in
this section may be considered instead for practical applications.

An even more dramatic sample-support reduction (compared with conventional SMI) was
recently demonstrated in References 59 and 60 for STAP applications. There we showed that
parametric STAP very efficiently mitigates ground clutter in the KASSPER airborne radar
phenomenological dataset, with its 352 degrees of freedom, in some cases requiring only a few
training samples. Yet in that practical application, with a parametric covariance matrix model
serving as a CME, we cannot expect an invariance of the output statistics that is sufficient for
CFARness. In such cases, therefore, the two-stage adaptive detector architecture provides a
framework for implementing very efficient but non-CFAR adaptive (antenna, STAP) solutions.
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CHAPTER 7

Compound-Gaussian Models and
Target Detection: A Unified View
K. James Sangston1, Maria S. Greco2, and Fulvio Gini2

7.1 Introduction
As a radar system operates, it generally receives clutter returns from the environment that must
be distinguished from targets of interest. If one assumes that the clutter returns obey complex
multivariate Gaussian statistics, then a straightforward application of statistical detection the-
ory leads to an optimal detector in the form of a well-known matched filter (Chap. 2 of this
book). The occurrence of Gaussian statistics is often justified on the basis of the central limit
theorem (CLT) applied to a phenomenological scattering picture that models the radar return
as arising from contributions of a large number of scatterers in the radar resolution cell. In this
case, the univariate intensity tail distribution is exponential. For early, low-resolution radars,
this model was adequate.

Unfortunately, as resolution capabilities of radars increased, the observed intensity tail
distributions were observed to deviate from the exponential model, particularly for sea clut-
ter and low grazing angles. In particular, the intensity was often observed to have tails that
exceeded exponential tails, sometimes greatly so, as shown for instance in References 1–10,
and references therein. Many researchers proposed several different intensity tail distributions
to model the observed radar clutter returns, including the Weibull, log-normal, and K distribu-
tions. Generally, such models were chosen because they exhibit larger tails than exponential
and thus can provide a better fit to the observed data than the exponential model does. Whereas
the exponential model has only one parameter that describes the average value of the intensity,
these larger-tailed models have two (or even more) parameters that allow both the average
intensity and the shape of the tails to be described. As a result, they give more flexibility in
fitting observed data. However, early on, there was little physical motivation for selecting any
particular model.

1Sensors and Electromagnetic Applications Laboratory, Georgia Tech Research Institute, Georgia Institute of
Technology, Atlanta, GA, USA.
2Dipartimento di Ingegneria dell’Informazione, Università di Pisa, Pisa, Italy.
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In 1972, Trunk at the Naval Research Laboratory [11] proposed that sea clutter returns be
modeled by a tail intensity distribution that essentially is a mixture of exponential distributions
and gave physical arguments to justify its use. This very general model incorporates not only
an extra shape parameter but incorporates an entire probability density function (pdf) and thus
is very flexible. The K distribution is known to be of the general form proposed by Trunk,
with a particular model, the gamma distribution, for the mixing distribution. In 1982, Jakeman
and Pusey [12] pointed out that the K distribution arises from the phenomenological scattering
picture if the number of scatterers is allowed to be a particular random variable (r.v.), namely
a negative binomial discrete random variable. This gives an alternate physical justification for
the appearance of K statistics as well. In 1992, Sangston and Gerlach [13] then pointed out
that Jakeman and Pusey’s arguments for the K distribution are much more widely applicable
and actually can give rise to any member of the general class of models proposed by Trunk.

What emerged from these various investigations was the idea that the general intensity tail
distribution of radar clutter returns should be modeled by a mixture of exponential intensity
distributions. The number fluctuation idea of Jakeman and Pusey, as extended by Sangston
and Gerlach, then leads in a natural way to a multivariate model for the complex clutter returns
from multiple pulses. Such models are called compound-Gaussian models and are the focus
of this chapter.

In what follows, we start by using the notion of completely monotonic functions to give
a unified view of the kinds of intensity tail distributions of interest here. We then show how
number fluctuations in the context of a phenomenological picture of the scattering process
lead naturally to these intensity tail distributions and their related compound-Gaussian multi-
variate models. We then discuss the general compound-Gaussian model and show how it may
be formulated as various generalizations of the multivariate Gaussian model. These various
formulations then lead to various formulations of the general optimal detector for detecting a
target against a background of compound-Gaussian clutter. We provide several specific exam-
ples of optimal detectors, as well as several examples of suboptimal detectors derived from the
various formulations of the compound-Gaussian model. Finally, we discuss a limitation of the
compound-Gaussian model and suggest a research area that may lead to the development of
more general random process models to describe the radar clutter return process.

7.2 Compound-Exponential Model for Univariate Intensity

7.2.1 Intensity Tail Distribution and Completely
Monotonic Functions

Let X be a zero-mean complex random variable with statistics of the univariate intensity
I = |X|2 specified by the tail distribution

Pr [I > y] = h0(y), y ≥ 0. (7.1)

A straightforward example of such a function is

Pr [I > y] = e−y, (7.2)

which is the intensity tail distribution when X is a zero-mean, unit variance complex Gaussian
random variable. We are interested in generalizations of this example, and in particular we
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consider the case where h0(y) is a completely monotonic function of y. A function is completely
monotonic on the interval 0 < y < ∞ if it has derivatives of all orders and satisfies

(−1)nh(n)
0 (y) ≥ 0, n = 1, 2, . . . . (7.3)

The name arises from the fact that each derivative is alternately non-increasing or non-
decreasing and thus monotonic. Furthermore, h0(y) is said to be completely monotonic on the
interval 0 ≤ y < ∞ if it further satisfies h0(0+) < ∞. In our case, where h0(y) represents an
intensity tail distribution, we have h0(0+) = 1, and so in what follows we consider only h0(y)s
that are completely monotonic on the interval 0 ≤ y < ∞.

To see how the completely monotonic functions generalize the exponential intensity tail
distribution and give rise to the class of models initially suggested by Trunk, we consider the
Bernstein–Widder theorem [14, 15]. According to the Bernstein–Widder theorem, an intensity
tail distribution h0(y) will be completely monotonic on the interval 0 ≤ y < ∞ if and only if it
satisfies

h0(y) =
∫ ∞

0
e−αydFα(α) (7.4)

where Fα(α) is the distribution function of a non-negative random variable α [14]. We will call
any intensity tail distribution function h0(y) that satisfies (7.3) or (7.4) (and thus is completely
monotonic) a compound-exponential model. This name comes from the representation in (7.4),
which shows that h0(y) is a mixture of exponential tail distributions. It is easy to see that the
exponential tail distribution of (7.2) satisfies (7.4) with Fα(α) a distribution function that
puts all of its mass at α = 1, i.e., fα(α) = dFα(α)/dα = δ(α − 1), where fα(α) is the pdf of the
random variable α and δ(·) is the Kronecker delta function.

7.2.2 Examples
Completely monotonic functions are much-studied; Miller and Stamko [16] give good sum-
mary overviews of many of their properties as well as several examples. Examples that have
arisen in the radar noise modeling context include those in Table 7.1.

Table 7.1 Examples of h0(y) and associated fα(α).

Distribution h0(y) fα(α)

Exponential exp(−y) δ(α − 1)
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Table 7.2 γ0(y) for selected examples.

Distribution γ0(y)

Exponential 1

K
√

ν

y

Kν−1(2
√

νy)

Kν(2
√

νy)

Weibull
2

ν
2 −2ν

y1− ν
2

α0 > 0

Student-t
ν

ν + y

It is also true that if h1(y) and h2(y) are each completely monotonic functions, then both
h0(y) = a1h1(y) + a2h2(y) and h0(y) = h1(y)h2(y) with a1, a2 ≥ 0 are also completely mono-
tonic functions [16]. Thus, given tail intensity distributions such as those in Table 7.1, we can
generate new models as either products or weighted averages (a1 + a2 = 1) of such existing
models. This gives us a mechanism for developing a completely new class of intensity tail
distribution models for comparing to measured data.

It is of interest to study the associated distribution Fα(α), which by (7.4) can be obtained
from h0(y) by inverse Laplace transformation [17]. In particular, it is of interest to examine
when Fα(α) is infinitely divisible, since this indicates that α then can be modeled as the sum
of independently and identically distributed (IID) random variables (which stems from the
definition of infinite divisibility). It is known that Fα(α) is the distribution function of an
infinitely divisible random variable if and only if

h0(y) = e−w0(y), (7.5)

where w0(0+) = 0 and w(1)
0 (y) is completely monotonic [17]. In our case, we can always write

w0(y) = − ln h0(y), where w0(0+) = 0 since h0(0+) = 1. If we now define

γ0(y) = − d

dy
ln h0(y), (7.6)

then Fα(α) is the distribution function of an infinitely divisible random variable if and only if
γ0(y) is completely monotonic. Table 7.2 gives γ0(y) for the examples in Table 7.1.

Each γ0(y) in Table 7.2 is completely monotonic (see e.g., [16]). Thus each associated
Fα(α) is infinitely divisible. In what follows we will require this condition for any compound-
exponential model of interest.

7.3 Role of Number Fluctuations
In this section, we will show that our intensity tail distributions h0(y) can be obtained from a
scattering process picture in which the complex random variable X is obtained as

X =
N∑

i=1

Aie
jϕi , (7.7)
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where the Ai > 0 are IID random variables that are mutually independent of the φi, which are
IID with uniform distribution on [0, 2π]. This is a standard phenomenological picture of a
scattering process giving rise, for example, to a radar return. It is well known that when the
number of scatterers N is fixed and large, the CLT leads to the conclusion that X is a complex
Gaussian random variable, in which case h0(y) is exponential. However, here we will let N be
a random variable, independent of the Ai and φi, and “large” in the sense that its mean value N̄
is large (i.e., N̄ � 1) This modification to the phenomenological model will lead to the more
general completely monotonic h0(y) as the general intensity tail distribution for X.

7.3.1 Transfer Theorem and the CLT
To gain some insight into the possible effects of including number fluctuations in the formu-
lation of limit theorems, let X1, X2, . . . be a sequence of IID Gaussian random variables with
zero mean and unit variance (denoted by N(0,1)), let N1, N2, . . . be a sequence of non-negative
integer-valued random variables independent of the sequence X1, X2, . . . , and define

Sn = 1√
n

Nn∑
k=1

Xk , n = 1, 2, . . . . (7.8)

If the value of Nn is fixed, then the conditional random variable Sn is Gaussian with mean
0 and conditional variance given by var(Sn|Nn) = Nn/n. The unconditional pdf of Sn may be
written as

fSn (s) =
∫ ∞

0

1√
2πt

e− s2
2t dFn(t), n = 1, 2, . . . (7.9)

where Fn(·) is the distribution function of t = Nn/n. If Nn/n converges in distribution to a
random variable τ as n → ∞, then (7.9) shows that Sn converges in distribution to a random
variable X with pdf given by

fX (x) =
∫ ∞

0

1√
2πτ

e− x2
2τ dFτ(τ), n = 1, 2, . . . , (7.10)

where Fτ(τ) is the distribution function of τ. The intensity tail distribution of X is our completely
monotonic function h0(y), where α = 1/τ. Because the sequence N1, N2, . . . may be chosen so
as to make Nn/n converge in distribution to any non-negative random variable τ, (7.10) shows
that the distribution of X may be significantly non-Gaussian. Moreover, as will be shown, if
Fτ(τ) is continuous at 0, then Nn converges in probability to ∞ as n → ∞, a result that defines
explicitly a sense in which Nn gets large. Thus, a sum of a “large” number of IID Gaussian
random variables can give rise to a non-Gaussian limiting random variable! This rather simple
example shows that number fluctuations can have profound effects on the results of limit
theorems and that an uncritical assessment of the way in which the number of contributions to
the sum gets “large” can lead to seriously incorrect results.
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We can get a sense of how this result will generalize to sums of IID variables that are not
necessarily Gaussian by rewriting (7.8) as

Sn =
√(

Nn

n

)
1√
Nn

Nn∑
k=1

Xk , n = 1, 2, . . . . (7.11)

If Nn gets large in some sense as n → ∞, we might expect the normalized sum to converge
to a Gaussian random variable and the quantity

√
Nn/n to converge to a random variable

√
τ.

In that case, the pdf of the limiting random variable X is given by (7.10).
The random version of the CLT is a rigorous presentation of the above reasoning for the

case when the variables X1, X2, . . . need not be Gaussian but are such that for non-random
Nn the limiting distribution is Gaussian. This version of the CLT may be formulated for the
more general case of random vectors and shows that in general, even if the non-random sum
converges to a Gaussian random vector, the sum with a random number of terms may converge
to a non-Gaussian random vector. Of course, if Fτ(τ) = U(τ − τ0) where U(·) is the Heaviside
step function and τ0 is a fixed constant, then X continues to be a Gaussian random variable. This
situation occurs, for instance as will be shown below, if the statistics of Nn are Poisson. More
generally, however, it is possible to choose the statistics of Nn in such a way to achieve any
possible distribution function Fτ(τ) defined for τ ≥ 0 and thus a wide range of non-Gaussian
limit distributions.

As is well known, if X1, X2, . . . are IID real-valued random variables with zero mean and
finite variance σ2, then the random variable

SN = 1√
N

N∑
i=1

Xi (7.12)

converges in distribution as N → ∞ to a Gaussian random variable with zero mean and variance
σ2. The more general problem in which the random variables are not identically distributed,
the assumption of finite variance is relaxed, and/or the normalization need not be 1/

√
N

is discussed fully in the well-known work of Gnedenko and Kolmogorov [18]. These limit
theorems have proven to be quite important in problems of statistical physics. In particular,
use of the CLT is almost ubiquitous in physical problems involving stochastic phenomena. A
common feature of the classical limit theorems is that N is treated as a deterministic quantity.
If N is a random variable, however, these classical results are no longer directly applicable. As
N can realistically be treated as a random quantity in many physical problems, limit theorems
analogous to the classical theorems but appropriate for random N should prove fruitful and
widely applicable.

The first limit theorem for the asymptotic distribution of a sum of a random number of
IID real-valued random variables appears to have been given by Robbins [19]. Among other
things, he showed that even if the CLT is applicable in the absence of number fluctuations
(i.e., in the case of non-random N), inclusion of number fluctuations can lead to non-Gaussian
limit distributions. His work gave rise to further investigations, the most relevant of which for
the present paper is the theorem, detailed in Appendix 7.A, called a transfer theorem, due to
Gnedenko and Fahim [20] and applicable for the sum of a random number of IID real-valued
random variables.
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In essence, the theorem assumes that the sum of N random variables converges in distribu-
tion when N is non-random and gives a condition under which the sum converges in distribution
when N is random. For instance, let Nn be a random variable with mean n, and let kn = n.
Let {xk} be a sequence of IID random vectors, and for each n let

xnk = xk√
n
. (7.13)

These assumptions give

sn
kn

= 1√
n

n∑
k=1

xk (7.14)

and

sn
Nn

= 1√
n

Nn∑
k=1

xk . (7.15)

Equation (7.14) represents a sum of a deterministic number of random vectors whereas
(7.15) is the sum of a random number of random vectors. Assume further that the sum in
(7.15) converges to a Gaussian random vector y with zero mean and covariance matrix Q.
Then the theorem states that when the sum in (7.15) converges, it converges to a random vector
y whose characteristic function is given by

Cy(u) =
∫ ∞

0
e− uT Qu

2 τdFτ(τ). (7.16)

Equation (7.16) shows that in general, even if the non-random sum converges to a Gaussian
random vector, the sum with a random number of terms may converge to a non-Gaussian
random vector.

The most important consequence of this result is that in problems in which the CLT may be
invoked to justify the use of the Gaussian distribution, the occurrence of number fluctuations,
which is the term we will use for random Nn, may lead to the occurrence of non-Gaussian
distributions. In many physical problems, number fluctuations almost certainly occur but are
ignored under the belief that “large n” implies Gaussian statistics. A re-examination of such
problems with careful consideration of the number fluctuations may lead to new, physically
significant results, or it may explain the appearance of non-Gaussian statistics in problems in
which the application of the CLT suggests that Gaussian statistics should occur [21].

7.3.2 Models for Number Fluctuations
For each distribution function Fτ(·) such that Fτ(−∞) = Fτ(0) = 0 and Fτ(∞) = 1 define a
collection of point mass functions (PMFs) parameterized by kn, n = 0, 1, 2, . . . , by

pc(i; kn) = Pr {Nn = i} =
∫ ∞

0

ti

i!e−tdFτ(t/kn) i = 0, 1, 2, . . . . (7.17)
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Table 7.3 Examples of number fluctuation models.

Model Point mass function pc(i; kn) Distribution function Fτ(τ)

Poisson
ki

n

i! e−kn u(τ − 1)
(leads to Rayleigh model)

Negative binomial
�(i + ν)

�(I + 1)�(ν)

ri

(r + 1)i+ν′

∫ t

0

νν

�(ν)
xν−1e−νxdx

(leads to K model)

r = kn

ν
, ν > 0

Inverse gamma

(
ν
kn

)ν

�(ν)
(νkn)

i
2 Ki−ν(2

√
νkn)

∫ t

0

νν

�(ν)

1

xν+1
e− ν

x dx
(leads to Student-t model)

Table 7.3 gives examples of number fluctuation models that actually lead to a given distri-
bution whose characteristic function is described by (7.16).

In the results above, we assumed that the sequence Nn/kn converges in distribution to a
random variable τ. Discussion on this convergence can be found in the appendix.

7.4 Complex Compound-Gaussian Random Vector
In this section, we present a multivariate model that has the corresponding univariate intensity
tail distribution specified by h0(y). To this end, let X1, X2, . . . be a sequence of identically
distributed complex random variables of the type we have been considering where the univari-
ate intensity tail distribution is given by h0(y) and consider an n-dimensional random vector
x = [X1, X2, . . . , Xn]T . We assume for the mean value E{x} = 0 and for the vector correlation
matrix E{xx†} = M = μΣ, where μ is the power of each vector component and Σ is the nor-
malized correlation matrix (all the elements along the main diagonal are equal to 1). Under
the stated conditions – i.e., we know h0(y) and M (or Σ) – there is not a unique multivariate
pdf to describe the behavior of x. Thus, we must choose a multivariate model based on some
additional criteria. The scattering picture discussed above suggests that, as long as we have a
“large” number of elementary scatterers and the actual number of elementary scatterers con-
tributing to the scattered field does not change during the time that the n complex random
variables are obtained, then we should choose a multivariate pdf as suggested by the transfer
theorem. We do that as follows.

For any integer n ≥ 1 define

hn(y) = (−1)n dn

dyn
h0(y), (7.18)

which we know exists because h0(y) is completely monotonic. Then, we specify a multivariate
pdf by

fx(x) = hn(q)

πndet(Σ)
(7.19)
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with

q = x†Σ−1x. (7.20)

A model with multivariate pdf specified as in (7.19) is called a compound-Gaussian model.
With a compound-exponential model for the intensity tail distribution, one may immediately
obtain a corresponding multivariate compound-Gaussian model simply by taking derivatives.
Of course, it may not be straightforward to compute the required derivatives, but such deriva-
tives always exist and in principle we can obtain the compound-Gaussian model in this fashion.
Because computing the derivatives may not always be easy, we also look for other ways to
characterize the compound-Gaussian model. To this end, it follows from our earlier consider-
ations that we may also write the multivariate pdf in (7.19) with hn(q) written in the following
forms:

hn(q) =
∫ ∞

0
αne−αqdFα(α) =

∫ ∞

0

1

τn
e− q

τ dFτ(τ). (7.21)

This alternate formulation motivates the physical interpretation of the compound-Gaussian
model as one that is locally Gaussian but whose local “power” – i.e., local average intensity
specified by τ – is a randomly varying quantity. Thus any particular observed vector x is
Gaussian except that τ (or equivalently α) is both unknown and random, and hence the name
compound-Gaussian. If a model for either Fτ or Fα is available, then the integrations in (7.21)
will also lead to the compound-Gaussian model.

Sometimes neither of the above two approaches is straightforward, and even when they
are available, they may not give any insight into the operation, for example, of the optimum
detector. So we look for other characterizations of hn(q). Let us now extend our definition in
(7.6) to

γk(y) = − d

dy
ln hk(y), (7.22)

for any k ≥ 0. This definition now leads to

hn(q) = exp

[
−
∫ q

γn(s)ds

]
, (7.23)

where
∫ q

γn(s)ds is the antiderivative ofγn(q). This reformulation of hn(q) is interesting because
from (7.18), (7.22), and (7.23) we find

γn(q) = hn+1(q)

hn(q)
=
∫∞

0 αn+1e−αqdFα(α)∫∞
0 αne−αqdFα(α)

= E[α|q], (7.24)

i.e., γn(q) = E[α|q] is the optimal mean estimate of the random variable α given the observed
data vector x (which is completely embodied in the quadratic form q), that is the minimum
mean-squared error estimate (MMSE). Thus, since we can write the multivariate pdf in the
Gaussian case as

fx(x) = e−q/σ2

πndet(M)
= e−(

∫ q ds)/σ2

πnσ2ndet(Σ)
, (7.25)
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the multivariate compound-Gaussian pdf may be thought of as a multivariate Gaussian pdf
with the known γ0 (in this case a0 = 1) replaced by an optimum estimator γn(q) evaluated as
shown in (7.24).

We may also repeatedly apply (7.18) and (7.23) to rewrite hn(q) in yet another way:

hn(q) =
[

n−1∏
k=0

γk(q)

]
h0(q). (7.26)

As may be seen, this formulation casts the multivariate pdf into two components – one arising
directly from the intensity tail distribution h0(y) and one arising from a product of estimators
γk(q). As will be discussed further below, these two components play different roles in the
detection problem.

Finally, it is straightforward to show

γn+k(y) = (Dl + I)kγn(y) (7.27)

and

n−1∏
k=0

γn(y) = (D + γ0(y)I)n−1γ0(y), (7.28)

where D = − d
dy , Dl = D ln, and I is the identity operator. These results give different ways to

obtain the multivariate pdf from the intensity tail distribution.
Practically, independently of any way to write hn(q), each complex compound-Gaussian

vector x can be written as a product between two independent terms, x = √
τg where g is a

complex Gaussian vector with unit variance, usually called speckle and τ is a positive random
variable referred to as texture that represents the local random power. Given a specific value
of the texture, x is a complex, zero-mean Gaussian random vector with conditional covariance
matrix given by Mτ = E{xx†|τ} = τΣ, where Σ = E{gg†} [22, 23].

7.5 Optimum Detection of a Signal in Complex
Compound-Gaussian Clutter

The detection problem is modeled herein by the following hypothesis test:{
H0 : z = x
H1 : z = x + βp

(7.29)

where x is a n-dimensional complex zero-mean compound-Gaussian clutter vector, p is a
n-dimensional complex vector representing a known steering vector for a signal of interest,
and β is a complex number representing the generally unknown amplitude and initial phase
of the signal of interest. In this problem, H0 represents the hypothesis that no signal is present –
i.e., the observed vector z at the radar comprises only clutter, whereas H1 represents the
hypothesis that a signal is present and so the observed vector z at the radar includes both signal
and clutter returns.
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The optimal detector, under the Neyman–Pearson criterion, for this problem is given by
the likelihood ratio compared with a fixed threshold that is set to yield a desired false alarm
probability (PFA):

(z) = pz(z|H1)

pz(z|H0)

H1

≷
H0

eT (7.30)

i.e., a ratio of multivariate pdfs under the two different hypotheses H1 – signal present and
H0 – signal not present. For the case of detecting a known additive signal s against a clutter
background described by the compound-Gaussian model we have

(z) = hn(q1)

hn(q0)

H1

≷
H0

eT , (7.31)

where q0 = z†Σ−1z and q1 = (z − s)†Σ−1(z − s), and s = βp is assumed known. That is

(z) =

∫ +∞

0

1

τn
exp
[
−q1

τ

]
pτ(τ)dτ∫ +∞

0

1

τn
exp
[
−q0

τ

]
pτ(τ)dτ

H1

≷
H0

eT (7.32)

and after some calculations [24]

(z) =
∫ ∞

0

1

τn

[
exp
(
−q1

τ

)
− exp

(
T − q0

τ

)]
pτ(τ)dτ

H1

≷
H0

0. (7.33)

In realistic scenarios, the complex signal amplitude β is unknown. If we ignore the proba-
bilistic law of the amplitude fluctuations (i.e., pβ(β)), a possible solution is obtained by means
of the generalized likelihood ratio test (GLRT) approach, whereby the unknown parameter β

is replaced by its maximum likelihood (ML) estimate β̂ML, thereby obtaining the strategy

max
β

(z; β) = (z; β̂ML)
H1

≷
H0

exp(T) (7.34)

The ML estimate of β has been obtained in References 26 and 27 as β̂ML = p†Σ−1z
p†Σ−1p . After

some easy algebra, we derive that in this case, the detection strategy is again given by (7.33),
provided that now we define q1 � z†Σ−1z − |p†Σ−1z|2

p†Σ−1p . Due to the appearance of the integral
in (7.32) and (7.33), the structure of the (generalized) likelihood ratio is difficult to implement
as it is written and does not provide any hints on the behavior of the detector.

7.5.1 Likelihood Ratio and Data-Dependent
Threshold Interpretation

It is well known that the log-likelihood ratio in the case of colored Gaussian noise leads to the
whitening-matched filter. Since in our case the disturbance model is a compound-Gaussian



274 CHAPTER 7 • Compound-Gaussian Models and Target Detection

process, the matched filter may play a role in the optimum detector even in the case at hand.
To explore this possibility, let us consider again (7.31) or equivalently

hn(q1)
H1

≷
H0

eT hn(q0), (7.35)

where hn(q) is a monotonically decreasing function of q, therefore has an inverse. Equation

(7.35) leads to h−1
n (eT hn(q0))

H1

≷
H0

q1 which may be rewritten as

q0 − q1

H1

≷
H0

fopt(q0, T ),
H1

≷
H0

λ, (7.36)

where in general

fopt(q0, T ) = q0 − h−1
n (eT hn(q0)). (7.37)

In Gaussian noise, for which hn(q) = exp(−q/σ2)/σ2n, it follows that fopt(q0, T ) = σ2T and
the log-likelihood ratio leads to

q0 − q1

H1

≷
H0

σ2T . (7.38)

One interpretation of these two detectors is that the detection structure, i.e., the left-hand side of
(7.38) and (7.36), is the same in both cases. The threshold however changes from Gaussian to
compound-Gaussian. Because the left-hand side of (7.38) and (7.36) is essentially the matched
filter, this comparison shows that the matched filter is indeed an essential part of the detection
structure in the case of compound-Gaussian clutter. In particular, when the target signal is
supposed perfectly known, then q0 − q1 = 2Re(s†Σ−1z) − s†Σ−1s and (7.40) leads to

Re(s†Σ−1z)
H1

≷
H0

fopt(q0, T )

2
− s†Σ−1s

2
. (7.39)

Because the left-hand side of (7.39) is the whitening-matched filter as applied to complex data,
this derivation shows that the optimum detector for a known signal in compound-Gaussian
clutter is equivalent to a matched filter compared with a data-dependent threshold [24].

In the case in which the complex signal amplitude β is unknown and we replace it in the
likelihood ratio with its ML estimate, the structure of the GLRT becomes

|p†Σ−1z|2 H1

≷
H0

(p†Σ−1p)fopt(q0, T ). (7.40)

It is worth noting that fopt(q0, T ) is the same as in (7.39).
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Table 7.4 Optimal detectors in K and Student-t compound-Gaussian noises.

Model K Student-t

Likelihood ratio

(√
q0

q1

)n−v Kn−v(2
√

vq1)

Kn−v(2
√

vq0)

(
v + q0

v + q1

)n+v

hn(q1)/hn(q0)

Estimator-correlator αn(s) =
√

v

s

Kn−v+1(2
√

vs)

Kn−v(2
√

vs)
αn(s) = v + n

v + s
e
∫ q0

q1
αn(s)ds

Matched filter with f (q0, T ) f (q0, T ) =
v
(

1 − e− T
v+n

)(
1 + 1

v
q0

)
data-dependent Not generally available in closed form.
threshold
q0 − q1 ≶ f (q0, T )

7.5.2 Likelihood Ratio and the Estimator-Correlator Interpretation
The estimator-correlator structure has been discussed previously by Sangston et al. [24]. Let
us go back to (7.27) and (7.28) where α = 1/τ. With these equations the log-likelihood ratio
can be written [24] as

(z) = ln
hn(q1)

hn(q0)
=
∫ q0

q1

E[α|s]ds, (7.41)

then

(z) = exp

{∫ q0

q1

E[α|s]ds

}
. (7.42)

In Gaussian case, the likelihood ratio can be written as

(z) = exp

{∫ q0

q1

1

σ2
ds

}
. (7.43)

Equations (7.42) and (7.43) reveal that the optimal detector in compound-Gaussian case
operates just as the Gaussian detector does except it replaces the known local power level in
the Gaussian case with an optimal estimate of the randomly varying inverse local power level.
This is the estimator-correlator formulation of the optimum detector.

In Table 7.4, we give the two formulations of the optimal detector for the cases of Student-
t-distributed and K-distributed compound-Gaussian models (for the sake of simplicity we have
set in both cases the average power equal to 1).

7.6 Suboptimum Detectors in Complex
Compound-Gaussian Clutter

As mentioned above, implementation of the optimal detector for the K-distributed compound
Gaussian model appears to be quite complicated. A similar observation holds for the Weibull
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model, where the required derivatives to obtain hn(q) or γn(q) = E[α|q] are tedious to compute
and not generally available in closed form. These considerations suggest studying suboptimal
implementations of the optimal detector.

7.6.1 Suboptimum Approximations to Likelihood Ratio
From (7.36), the optimum detection structure is given by

(z) =
∫ +∞

0
1

τn
exp
[
−q1

τ

]
pτ(τ)dτ∫ +∞

0
1

τn
exp
[
−q0

τ

]
pτ(τ)dτ

H1

≷
H0

eT . (7.44)

From a physical point of view, the difficulty in utilizing this detection structure arises from
the fact that the power level τ associated with the conditionally Gaussian clutter is unknown and
randomly varying. One approach to overcome this difficulty is to replace the unknown power
level with an estimate inside the likelihood ratio. In particular, replace τ in the Gaussian kernel
of the likelihood ratio with an estimate τ̂i, i = 0,1. The likelihood ration test then becomes(

τ̂0

τ̂1

)n

exp

[
q0

τ̂0
− q1

τ̂1

]
H1

≷
H0

eT . (7.45)

This approach is suboptimal and cannot guarantee a good detector. However, intuitively
one expects that a good quality estimate should lead to a good detector. The form that the
detector takes depends on the type of estimate used for the unknown power level. Candidates
are the MMSE, ML, and maximum a posteriori (MAP) estimates [24]. The ML estimate, which
is given by τ̂i = qi/n, is particularly attractive, as it does not depend on the details of the pdf
pτ(τ) and leads therefore to a distribution-free test(

q0

q1

)n H1

≷
H0

eT . (7.46)

This detector has been obtained previously under varying assumptions by Korado [27],
Picinbono and Vezzosi [28], Conte et al. [29], Sharf and Lytle [30], and Gini [25] and is called
the GLRT. It may be rewritten as ⎛⎜⎜⎝ 1

1 − q0 − q1

q0

⎞⎟⎟⎠
n

H1

≷
H0

eT , (7.47)

which, using τ̂0,ML = q0/n, is equivalent to

q0 − q1

H1

≷
H0

τ0,MLn(1 − e−T/n). (7.48)

Comparison of this latter formulation of GLRT with (7.42) is particularly interesting as it
shows that the GLRT is essentially the matched filter with the unknown power level replaced
by its ML estimate under the H0 hypothesis.
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7.6.2 Suboptimum Approximations to the
Data-Dependent Threshold

Equation (7.39) shows that the optimum detector can be interpreted as a matched filter com-
pared with a data-dependent threshold that is a function of only the quadratic statistic q0. Quite
often it is not possible to write this data-dependent threshold fopt(q0, T ) in a closed form. In
some cases, it is possible, as when the clutter is K-distributed and ν − n = 1/2 and

fopt(q0, T ) =
⎧⎨⎩T
√

η
2ν

(√
q0 − T

2

√
η
2ν

)
for q0 >

ηT2

2ν
sign (T)

q0

2
elsewhere

(7.49)

where η = E{τ}, the location parameter of the K distribution.
The difficulty of writing the optimum threshold in closed form suggests that some sub-

optimum detectors can be obtained by replacing the optimum threshold with some suboptimum
approximations. The idea is to look for the best (in a mean-square sense) linear, quadratic, or
higher order approximation to the threshold and thereby obtain a suboptimum detector that is
simpler to implement than the optimum one yet whose performance is close to optimal.

Consider the approximations:

f1(q0, T ) = b0 + b1q0 and f2(q0, T ) = c0 + c1q0 + c2q2
0. (7.50)

The problem to solve may be stated, for example for the linear approximation, as follows:

min
b0,b1

[E{[ fopt(q0, T ) − (b0 + b1q0)]2}]. (7.51)

To find the coefficients b0 and b1, the derivatives of the mean-square error with respect to the
unknown coefficients are set equal to zero. This procedure yields a set of linear equations in
two unknowns, whose solution in matrix form is given by[

b0

b1

]
=
[

1 E{q0}
E{q0} E{q2

0}
]−1[

E{ fopt(q0, T )}
E{q0 fopt(q0, T )}

]
. (7.52)

The coefficient for the second approximation is found in a similar manner by solving

min
c0,c1,c2

[E{[ fopt(q0, T ) − (c0 + c1q0 + c2q2
0)]

2}] (7.53)

yielding ⎡⎣c0

c1

c2

⎤⎦ =
⎡⎣ 1 E{q0} E{q2

0}
E{q0} E{q2

0} E{q3
0}

E{q2
0} E{q3

0} E{q4
0}

⎤⎦−1⎡⎣ E{ fopt(q0, T )}
E{q0 fopt(q0, T )}
E{q2

0 fopt(q0, T )}

⎤⎦. (7.54)

Higher order approximations may be found in a similar manner. However, we believe the
second-order approximation represents a good trade-off between performance and complexity.

Note that the solutions of (7.52) and (7.54) require knowledge of the moments and cross-
moments of fopt(q0, T ) and q0. In practical applications, these moments could be estimated
from data and inserted into the detector form. In addition, the threshold could be precomputed
and stored in a look-up table to allow detector operation in real time. In Reference 24, we have
provided some cases in which the threshold approximations can be written in closed form.
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Figure 7.1 Comparison of data-dependent threshold [24].

Figure 7.1 shows the behavior of the various approximations to the data-dependent threshold.
The quadratic approximation generally yields the best approximation to the optimum threshold,
with the linear approximation being the second best followed by the approximation resulting
from the GLRT. In this figure n = 4, ν = 4.5, and η = 1 000.

7.6.3 Suboptimum Approximations to Estimator-Correlator
In the estimator-correlator structure, the MMSE estimator of α may be difficult to implement in
a practical detector. The structure itself suggests that suboptimum detectors may be obtained
by replacing the MMSE estimator with a suboptimum estimator. Denote this suboptimum
estimator by α(qi). From (7.42) the estimator-correlator structure becomes

(z) = exp

{∫ q0

q1

α̂(s)ds

}
. (7.55)

As in the case of approximation to the likelihood ratio directly, candidate estimators are the
ML and the MAP estimators. It is straightforward to show that the ML estimate of α is given
by αi,ML = 1τi,ML. When this estimator is used in (7.55) the resulting detector is given by the
GLRT in (7.46).

The MAP estimate on the other hand depends on the details of pα(α). For K-distributed
clutter, the MAP estimator is given by [24]

α̂i,MAP =
(n − ν − 1) +

√
(n − ν − 1)2 + 4 ν

η
qi

2qi
(7.56)
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and the suboptimum estimator-correlator detector is

MAP(z) =
(

α̂1,MAP

α̂0,MAP

)(n−ν−1)

exp [q0α̂0,MAP − q1α̂1,MAP]. (7.57)

An indication of how the GLRT of (7.46) and the suboptimum of (7.57) are close to
the optimum detector can be obtained by looking at how closely the suboptimum estimates
approximate the optimum MMSE estimate, which for K-distributed clutter is given by

α̂i,MMSE =
√

ν

ηqi

Kν−n−1

(√
4νqi
η

)
Kν−n−1

(√
4νqi
η

) i = 0, 1 (7.58)

Figure 7.2 shows a comparison of the three estimates as a function of the quadratic form q
for the case in which n = 4, ν = 4.5, and η = 1 000. The figure shows that in this case the MAP
estimator is better than the ML and that the detector resulting from using the MAP estimate
should be close to optimal. As the number of samples n increases, one may show that

α̂i,MAP → n − ν − 1

qi
+ ν

η(n − ν − 1)
∼= n

qi
(7.59)
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Figure 7.2 α estimates as a function of q [24].
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and

α̂i,MMSE → n − ν

qi

∼= n

qi
(7.60)

which shows that as the number of samples is asymptotically large, the GLRT is equivalent to
the optimum detector. This observation is consistent with the results of Picinbono and Vezzosi
[28] and Conte et al. [8].

7.6.4 Performance Evaluation of Optimum and
Suboptimum Detectors

The performance of the optimum detector defined in (7.31) has been calculated in Reference
21 when the signal fluctuates according to the Swerling I model. The detection performance
of the detector (7.31) is given therein by

PFA =
∫ ∞

0
dτpτ(τ)

∫ ∞

0
dγ

γn−2

τn−1(n − 2)! exp

(
−1

τ
h−1

n (e−T hn(γ))

)
(7.61)

and

PD =
∫ ∞

0
dτpτ(τ)

∫ ∞

0
dγ

γn−2

τn−1(n − 2)! exp

(
−γ

τ
− h−1

n (e−T hn(γ)) − γ

τ + S/C

)
(7.62)

where S/C = σ2
s p†Σ−1p is the signal-to-clutter ratio. Using (7.37) and replacing it in (7.61)

and (7.62) we obtain

PFA =
∫ ∞

0
dτpτ(τ)

∫ ∞

0
dγ

γn−2

τn−1(n − 2)! exp

(
−1

τ
(γ − 2fopt(γ , T ))

)
(7.63)

and

PD =
∫ ∞

0
dτpτ(τ)

∫ ∞

0
dγ

γn−2

τn−1(n − 2)!exp

(
−γ

τ
− 2fopt(γ , T )

τ + S/C

)
. (7.64)

Detectors that are obtained from the estimator-correlator interpretation may in principle
be assessed through the use of (7.61) and (7.62) where hn(γ) is replaced with ĥn(γ) where the
optimum estimator of α is replaced by some suboptimum estimator. The detectors obtained
from the matched filter interpretation may be assessed through the use of (7.63) and (7.64)
where fopt(γ , T ) is replaced by some suboptimum f̂ (γ , T ) as in (7.49) and (51).

In the following, we show some performance results for the optimum detector, the GLRT of
(7.46) and the two detectors obtained from (7.49) and (51). In all cases, the clutter is assumed
to be K-distributed. The clutter covariance matrix is exponential, i.e., Σij = ρ|i−j| with ρ = 0.9.
The Doppler frequency of the Swerling I target is fD = 0.5PRF where PRF is the pulse rep-
etition frequency of the radar. The probability of false alarm has been set to PFA = 10−5. In
Figure 7.3, the dimension of the processed vector is n = 4, and in Figure 7.4 n = 16.

In all the examined cases, the quadratic approximation to the data-dependent threshold leads
to detection performance almost indistinguishable from the optimum. As this approximation is
much simpler than the optimum detector, it represents a good trade-off between performance
and ease of implementation. On the other hand, the CFAR property of the GLRT is a highly
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desirable property for a practical detector. If the number of pulses to be processed for each
detection decision is large, then the GLRT has performance within a fraction of a dB of the
optimal performance as proved in Figure 7.4. It is easier to implement than the quadratic
approximation and hence is preferable when n is large.

7.7 New Interpretation of the Optimum Detector
In this section, we re-examine the optimum detector from a new point-of-view to gain insight
into how the detector actually makes a detection decision.

7.7.1 Product of Estimators Formulation
Let f (x) be a univariate amplitude pdf that can be written as a Rayleigh mixture:

f (x) =
∫ ∞

0
αxe−αx2

dFα(α) x ≥ 0, (7.65)

where Fα(α) is the cumulative distribution function of a positive random variable α, and
consider the univariate power distribution of y = x2 given by

g(y) = f (
√

y)

2
√

y
=
∫ ∞

0
αe−αydFα(α) y ≥ 0. (7.66)
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Define

h0(y) = 1 −
∫ y

0
g(s)ds =

∫ ∞

0
e−αydFα(α) y ≥ 0. (7.67)

This is simply the intensity tail distribution. Remembering that γ0(y) = − d
dy ln h0(y) and

h0(y) = exp
[−∫ γ0(y)dy

]
, we may rewrite hn(y) to obtain an alternate formulation of the

likelihood ratio. First note that if we define hn(y) = Dhn−1(y), with n = 1, 2, . . . then repeated
application of this operation to h0(y) yields

hn(y) =
∫ ∞

0
αne−αydFα(α), y ≥ 0, (7.68)

i.e., we obtain hn(y), that defines the multivariate compound-Gaussian model. Now examine

h1(y) = Dh0(y) = γ0(y)h0(y), (7.69)

which follows from (7.68). Continuing, we may write

h2(y) = Dh1(y) = Dγ0(y)h0(y) = γ0(y)Dh0(y) + h0(y)Dγ0(y)

= γ0(y)h1(y) + h1(y)

γ0(y)
Dγ0(y) = (γ0(y) + Dlγ0(y))h1(y),

(7.70)
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where Dl = D ln. If we now define

γ1(y) � Dlγ0(y) + γ0(y) = (Dl + I)γ0(y), (7.71)

then we have h2(y) = γ1(y)h1(y). It is apparent that we may repeat this argument and in general
write

hn(y) = Dhn−1(y) = γn−1(y)hn−1(y), (7.72)

where γn(y) = (Dl + I)γn−1(y) = (Dl + I)nγ0(y). From (7.73), it immediately follows that

hn(y) = [�n−1
k=0γk(y)]h0(y), (7.73)

which in turn allows us to rewrite the likelihood ratio as

L(q1, q0) =
[
�n−1

k=0
γk(q1)

γk(q0)

]
h0(q1)

h0(q0)
. (7.74)

Equation (7.75) presents a new formulation of the likelihood ratio for the problem of
detecting signals against a compound-Gaussian background.

It follows from (7.73) that γn(q) = hn+1(q)

hn(q) = Dhn(q)
hn(q) = Dlhn(q), which leads directly to

the estimator-correlator formulation of the optimal detector given in Table 7.4. Thus, in the
likelihood ratio as given in (7.75), the expression γk(qi) represents an estimate of the random
variable α under each hypothesis.

7.7.2 General Properties of Product of Estimators
The product of estimators presented here recasts the optimal detector into two different com-
ponents as shown in (7.74): a product of γk terms and the ratio h0(q1)/h0(q0). From these two
components, we see a general feature of the optimal detector in compound-Gaussian clutter. In
general, as the statistics of the clutter deviate from Gaussian (i.e., the tails of the amplitude pdf
get larger than Rayleigh tails), we expect that the probability that the quadratic form q under
either hypothesis will exceed any given value y will grow, and over a broad range of values
of q1 and q0, the difference in the values of h0(q1) and h0(q0) will therefore decrease. As a
result, as the background becomes more non-Gaussian, we expect that the term h0(q1)/h0(q0)
to contribute less to the likelihood ratio. This behavior is easily seen, for example, for Weibull
statistics, where we have h0(q) = exp

(
− ν−2

η
qν/2
)

. As ν → 0, this term becomes a constant
and thus does not contribute to the likelihood ratio.

On the other hand, one may easily show for a Gaussian background that the likelihood ratio
becomes L(q1, q0) = h0(q1)

h0(q0) = exp
(

q0−q1
η

)
, so that the γks do not contribute at all in this case

(they become constants and cancel out of the likelihood ratio). Therefore, in a quasi-Gaussian
background, the γks are expected to contribute very little to the likelihood ratio.

These observations suggest the optimal detector – as shown by the product of estimators
formulation – separates into two components taking importance in different regimes. Namely
the ratio h0(q1)/h0(q0) determines the detection decision in quasi-Gaussian clutter whereas
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the product of the γk terms determines the detection decision in more non-Gaussian clutter.
Thus, we have

[
n−1∏
k=0

γk(q1)

γk(q0)

]
︸ ︷︷ ︸
More important
for severely non-
Gaussian clutter

h0(q1)

h0(q0)
.︸ ︷︷ ︸

More important
for quasi-
Gaussian clutter

As a particular example, let us examine the univariate amplitude statistics be Student-t
distributed with the following amplitude pdf, which is obtained by letting the local power level
τ have inverse gamma statistics:

fx(x) = 2x

η

(
1 + x2

ην

)ν+1
0 < ν < ∞. (7.75)

For the Student-t model, we find

h0(y) = 1(
1 + y

ην

)ν and γk(y) =
1

η
+ k

ην

1 + y

ην

. (7.76)

Figures 7.5–7.8 illustrate the behavior of the two components of the likelihood ratio: h0(q)

and γk(q) ∝ ∏K
k=1

(
1 + q

ην

)−1
(we ignore the numerator in each of the estimates since they

cancel out the likelihood ratio).
It can be seen that as one of these two component curves gets steeper, the other component

curve gets flatter. This demonstrates the changing roles of the two components to the detector
as the clutter varies from Gaussian to non-Gaussian. As one or the other of the component
curves gets steeper, we expect that component to contribute more to the likelihood ratio. This
occurs because a difference between q0 and q1 will result in a larger value being contributed
to the likelihood ratio from the steeper curve. Conversely, in regions where the curve is flat we
do not expect as large a contribution to the likelihood ratio.

To consider a second advantage of the product of estimators formulation, examine the
behavior of the γks for Student-t clutter as shown in Figure 7.9.

It is evident from this figure, which describes clutter with very heavy tails, that each γk(q) –
as well as the product of the γks – is steeper for smaller values of q than for larger values of q.
Because a small difference between q1 and q0 in the steep region where q is small can result
in a large value for the ratio γk(q1)/γk(q0), the γk terms, which are expected to dominate the
likelihood ratio in severely non-Gaussian clutter, should lead to detections in this steep region.
As discussed further below, this behavior appears to be a general feature of any compound-
Gaussian model whose tails can become sufficiently large. Note that the quadratic form q is
a measure of the local power level of the background. Thus, in the severely non-Gaussian
regimes of the compound-Gaussian model, the above considerations suggest when a detection
occurs it is likely to occur when q is small – i.e., when the local power level is small. This
behavior makes sense since a given target is more likely to be detectable when the local
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Figure 7.5 Extremely non-Gaussian clutter.
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Figure 7.6 Less severely non-Gaussian clutter. The curves have moved closer to each other.

power level is small rather than when it is large. Severely non-Gaussian clutter is sometimes
said to be “spiky.” The product of estimators formulation suggests that in “spiky” clutter
the optimal detector detects targets “between the spikes” – i.e., when the local power level
is small.
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7.7.2.1 Examples of Product of Estimators
Consider first the case of Rayleigh univariate amplitude statistics. In this case, we have

fx(x) = 2

η
x exp

(
−x2

η

)
, (7.77)

which yields

h0(y) = exp

(
− y

η

)
and γ0(y) = 1

η
(7.78)

It immediately follows that γk(y) = 1
η

∀k and we find L(q1, q0) = h0(q1)
h0(q0) = exp

(
q0−q1

η

)
, as

expected.
Consider next the case of K-distributed univariate amplitude statistics. In this case, we have

fx(x) = 4

(√
ν/η
)ν+1

�(ν)
xνKν−1

(
2x
√

ν/η
)

, (7.79)

which leads to

h0(y) = 2

(√
yν/η

)ν
�(ν)

Kν

(
2
√

yν/η
)

and γ0(y) =
(√

ν/η
)

Kν−1
(
2
√

yν/η
)(√

y
)

Kν

(
2
√

yν/η
) . (7.80)

It is well known that as ν → ∞ K-distributed amplitude statistics approach Rayleigh statis-
tics and we recover the results presented above. Let us now examine the case where ν → 0. In
particular, let y be fixed and let ν be small enough such that

√
yν/η is small. In that case, we

may use the asymptotic expansion of the modified Bessel function: Kν(t) ∼= �(ν)
2

t
2
−ν for t → 0

to show that h0(y) ∼= 1 when ν → 0. Although this is not a uniformly asymptotic result since ν
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Figure 7.10 General behavior of γ0(q) in severely non-Gaussian clutter.

must decrease as y increases to keep
√

yν/η small, it nonetheless shows that the detection deci-
sion is based more on the γk terms than on the ratio h0(q1)/h0(q0) as the background becomes
more non-Gaussian since h0(q1)/h0(q0) tends to 1 in this case and thus contributes very little
to the likelihood ratio. Note further that as the background becomes more non-Gaussian,
i.e., ν → 0, we find γ0(y) ∼= 1/y. From this we may find the other γks by differentiation. For
example, we find γk(y) ∼= k/y.

It is then evident from the structure of γ0(q) that for small values of q, γ0(q) is steeper than
for larger values of q (the same observation holds for the γk’s in general) as the clutter becomes
more non-Gaussian. This behavior is shown schematically in Figure 7.10.

As a result, the γk terms contribute the most to the likelihood ratio in the steep region where
q is small since a small difference between q1 and q0 in this region can result in a large value for

the ratio γk(q1)/γk(q0). As fx(x) = 2
ν
2 − 1

η
νxν−1 exp

(
− 2

ν
2 −1

η
xν
)

we have γk(q1)/γk(q0) ∼= q1/q0

and the likelihood ratio in this case becomes

L(q1, q0) =
(

q1

q0

)n

. (7.81)

The likelihood ratio in (7.82) defines the well-known GLRT. (This result can also be
obtained by letting ν → 0 in the likelihood ratio.)

Consider next Weibull amplitude statistics:

fx(x) = 2
ν
2 −1

η
νxν−1 exp

(
−2

ν
2 −1

η
xν

)
. (7.82)

This choice leads to

γ0(y) = 2
ν
2 −1ν

ηy1− ν
2

, and h0(y) = exp

(
−2

ν
2 −1

η
y

ν
2

)
. (7.83)

It is immediately evident that this model recovers Rayleigh statistics as ν → 2. Consider
now ν → 0. In this case, as we have already discussed above, h0(q1)/h0(q0) tends to 1. We

also see from (7.84) that γ0(y) ∼= 2
ν
2 −1

ν
ηy , from which we can obtain γk(y) ∼= Ck

y where Ck

is a constant. Thus again as the clutter becomes severely non-Gaussian the optimal detector
becomes the GLRT as was discussed above with respect to the K-distributed statistics.
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As a final example, consider Student-t amplitude statistics. We gave h0(y) and γk(y) in
(7.77). The general likelihood ratio for this case becomes

L(q1, q0) =
(

1 + q0
νη

1 + q1
νη

)n (1 + q0
νη

1 + q1
νη

)ν

(7.84)

The two terms comprising this likelihood ratio have different behavior as a function of
ν, and their relative contributions may be seen to vary as the amplitude statistics vary from
Rayleigh to severely non-Rayleigh. In particular, the right-hand term does not contribute as
ν → 0 and the left-hand term does not contribute as ν → ∞.

It is evident that this model recovers the Rayleigh result as ν → ∞. Consider now the
severely non-Gaussian case. As ν → 0 we find which again leads to the GLRT. Thus, as was
the case for K and Weibull amplitude statistics, the GLRT again arises as the optimal detector
for our detection problem with Student-t amplitude statistics as the background becomes
increasingly non-Gaussian.

7.7.2.2 Conjectured Behavior for Heavy-Tailed Distributions
Consider a compound-Gaussian model for which as the tails of the intensity tail distribution get
heavy. This is the case for three compound-Gaussian models examined here – the K , Weibull,
and Student-t distributions – i.e., each of these distributions is parameterized such that the tails
can be made extremely large. In this case, we see from the product of estimators formulation that

as the tails get heavy, the likelihood ratio behaves as L(q1, q0) =
(

q1
q0

)n
, which is the GLRT

of (7.82). It is known that the GLRT is asymptotically optimal for all compound-Gaussian
models as n → ∞ [29]; the considerations above lead to the conjecture that the GLRT is also
asymptotically optimal for any value of n for all compound-Gaussian models that can be made
to have sufficiently large tails. A heuristic explanation for this result is as follows. The optimal
detector attempts to take into account information embodied in the distribution function Fτ(τ)
(or equivalently in Fα(α)) about the fluctuation of the local power level and use this information
to make the detection decision. However, unlike in quasi-Gaussian or even moderately non-
Gaussian models, where the local power level fluctuates generally within a reasonably small
region around a mean value, in extremely non-Gaussian models with heavy tail behavior, the
only information embodied in Fτ(τ) is that the local power level can essentially take on any
value. In this case, the optimal estimate of the inverse of the local power level reduces to an
ML estimate, which does not utilize any information from the distribution function Fτ(τ), and
thus we obtain the GLRT.

7.7.2.3 Observations on Compound-Gaussian Noise as a Random Process
Let us return to our phenomenological scattering picture and explicitly show its dependence
on time:

E(t) =
Ns(t)∑
i=1

ai(t)e
jφi(t). (7.85)

In this view, the scattered field at any particular time comprises the contributions of a random
number NS(t) of elementary scatterers encompassed within a “swath,” which we indicate by
the subscript “S”. Note that in general NS(t) is a random process, i.e., it changes with “time,”
with also encompasses changes with location as a radar scans. However, if it changes at a rate



290 CHAPTER 7 • Compound-Gaussian Models and Target Detection

that is much slower than the rate at which the samples are obtained, then the results obtained
herein for the multivariate compound-Gaussian model can be applicable. For example, if a
radar samples the environment at a rate faster than the NS(t) changes, etc., then during a period
of time that NS(t) is equal to a fixed – but random – number, the radar will collect n pulses. That
is the situation captured by the compound-Gaussian multivariate model, where all n complex
samples are associated with the same – but random – local power level τ. However, in general,
n cannot be made arbitrarily large and still have the compound-Gaussian model remain valid
because eventually NS(t) will change while the radar is collecting pulses. This, therefore, puts
a limit nmax on the number of pulses n for which the compound-Gaussian model remains
applicable. For n > nmax, the assumption that NS(t) – and hence the local power level τ –
remains the same for all n pulses breaks down, and new techniques for solving the detection
problem are required. Thus it would be beneficial to develop models for the random process
NS(t) and explore the effects of the power level changing during a dwell.

To this end we observe, as discussed above, that each of the intensity tail distributions
examined here is associated with an infinitely divisible distribution Fα. For example, the K-
distribution is associated with α modeled as an inverse gamma-distributed random variable,
whereas the Student-t distribution is associated with α modeled as gamma-distributed random
variable. Both of these distributions for α are known to be infinitely divisible, which means
they can be obtained from the sum of IID random variables. This suggests that Levy processes,
which are processes having stationary and independent increments and are naturally associated
with infinitely divisible distributions, be explored as a mechanism to develop random process
models of α, and hence of τ = 1/α. (For these two models, Levy processes can be used to
develop random process models for τ directly, but in general one would need to develop a
random process model for α and then model τ as its inverse.) Such models would then permit
further studies of the effects of time-varying local power levels on the kinds of detection
problems studied here. An example of this approach is presented in Reference 31.

Appendix 7.A

Transfer Theorem and Its Interpretation
Let {Nn} be a sequence of non-negative integer-valued random variables, and let {xnk} be a
double entry table of random vectors taking values in Rd , d ≥ 1. Assume for each n that the
random vectors xnk , k = 1, 2, . . . are IID with zero mean and that Nn is independent of the
sequence {xnk}. Define

sn
k =

k∑
i=1

xni. (7.86)

The transfer theorem may be stated as follows.

Theorem 7.1. Let there exist a sequence {kn} of integers with kn → ∞ as n → ∞ and distri-
bution functions Fx and Fτ such that

A. sn
kn

converges in distribution to a random vector x with distribution function Fx;

B. Nn/kn converges in distribution to a random variable τ with distribution function Fτ . Then
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C. sn
Nn

converges in distribution to a random vector y with characteristic function given by

Cy(U) =
∫ ∞

0
[Cx(U)]tdFτ(t), (7.87)

where Cx is the characteristic function of the distribution Fx.

One way to understand this theorem is as follows. Under the assumption that condition A
holds, the theorem gives condition B the status of a sufficient condition in order for condition
C to hold. The natural question that then arises is if condition B is also a necessary condition.
In other words, under the assumption that A and C are true, does it follow that B is true? To
this end we have [32–34];

Theorem 7.2. If conditions A and C in the statement of the above theorem hold and Fτ does
not place all of its mass at 0, then condition B also holds.

In particular, if x is a Gaussian random vector, then the two theorems may be combined to
give:

Theorem 7.3. Let there exist a sequence {kn} of integers with kn → ∞ as n → ∞ such that sn
kn

converges in distribution to a Gaussian random vector x. Then sn
Nn

converges in distribution
to a random vector y with characteristic function given by (7.2) if and only if Nn/kn converges
in distribution to a random variable τ with distribution Fτ .

The results presented above do not quite give a complete result with respect to the relation-
ship between the conditions A–C. In the interpretation given earlier, the results are predicated
on the validity of assumption A. In the physical motivation given for examining these prob-
lems, A is a natural assumption. It is interesting, however, to ask the following question: if B
and C hold, does it follow that A holds? If we restrict our attention to the case of Gaussian x
we have the following result due to Szasz and Freyer:

Theorem 7.4. If conditions B and C in the statement of Theorem 1 hold, with the further
restrictions that x is a Gaussian random vector and Fτ does not place all of its mass at 0, then
condition A holds also.

From these theorems, we see that if the limiting distribution in the absence of number
fluctuations is Gaussian, then we have the following relations among the conditions A–C in
the presence of number fluctuations (again we assume Fτ does not place all of its mass at 0):

(1) A and B imply C,

(2) A and C imply B,

(3) B and C imply A.

These implications among the conditions A–C give a rather complete account of the influence
of number fluctuations on the convergence of partial sums that, in the absence of number
fluctuations, converge to a Gaussian random vector.

Convergence of Nn
By analogy with the CLT, a question naturally arises as to how large is Nn. In other words,
does Nn in some sense approach ∞, which would support our heuristic reasoning about the
convergence in (7.13)? This question is different than the question about the convergence
of Nn/kn. In the CLT, we have n → ∞ so it is important to understand if Nn → ∞ as well.



292 CHAPTER 7 • Compound-Gaussian Models and Target Detection

After all, the appearance of non-Gaussian statistics in the random CLT case could conceivably
be the result of Nn (i.e., the number of scatterers being summed) being small in some sense.
However, the conditions of the theorem are such that Nn → ∞ in a probabilistic sense under
quite general conditions. To see this, first note that because kn → ∞ as n → ∞, if Nn remains
finite as n → ∞ (for instance, Nn might converge to a random variable with finite support),
then Nn/kn will converge to 0. This case was excluded from the earlier theorems. Therefore,
at the very least we are interested in cases in which Nn converges in some sense with support
that includes ∞. With respect to cases in which Nn → ∞ we have the following easily argued
result:

Proposition 7.1. If Nn/kn converges in distribution to a random variable τ with distribution
function Fτ where Fτ(t) is continuous at t = 0 (hence Fτ has no mass at 0), then Nn converges
in probability to ∞ (i.e., for any K > 0 lim

n→∞ Pr(Nn ≥ K) = 1).

Note that if Fτ has some mass at 0, then the resulting distribution function of y will also
have mass at 0, which clearly indicates non-Gaussian behavior. Even in the cases where this
degeneracy does not occur, however, it is nonetheless possible for the limiting random vector
y to be non-Gaussian even though Nn approaches ∞ (in the sense indicated above). This
non-Gaussian behavior is directly attributable to the occurrence of number fluctuations.
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CHAPTER 8

Covariance Matrix Estimation in
SIRV and Elliptical Processes and
Their Applications in Radar
Detection
Jean-Philippe Ovarlez1, Frédéric Pascal 2, and
Philippe Forster 3

8.1 Background and Problem Statement
In adaptive radar detection, the main problem consists in detecting a complex signal α p ∈ C

m

corrupted by an additive noise c (clutter, thermal noise, etc.). The background parameters are
usually estimated using available signal-free secondary data (ck)k∈{1,...,K}. In a case of point-
like target (see Chapter 9 of this book for extended targets detection scheme), this problem can
be stated as the following binary hypothesis test:{

H0 : y = c, yk = ck , for k = 1, . . . , K ,

H1 : y = α p + c, yk = ck , for k = 1, . . . , K ,
(8.1)

where y is the complex m-vector of the received signal, α is an unknown complex target
amplitude and p stands for a generally known steering vector.

The Probability of False Alarm (PFA), denoted as Pfa, is defined as the supremum of the
probability of accepting H1 under H0 (over the unknown parameters of the distribution of the
observables under H0); if the decision rule has a distribution under H0 that is independent of
the nuisance parameters (covariance matrix for example), the decision rule is said to guarantee
to have the Constant False Alarm Rate (CFAR) property. The probability of detection Pd is

1CentraleSupélec/SONDRA and French Aerospace Lab, ONERA DEMR/TSI, Gif-sur-Yvette, France
2L2S/CentraleSupélec-CNRS-Paris-Sud University, Gif-sur-Yvette, France
3SATIE, ENS Cachan, CNRS, Paris-Sud University, Cachan, France
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defined as the probability of accepting H1 when H1 is true. (The interested reader may refer
to Chapter 1 of this book for a detailed discussion on binary hypothesis tests.)

When the parameters of the noise are unknown, the usual procedure to derive the
best strategy relies on the Generalized Likelihood Ratio (GLR) statistic, namely the ratio
�(y, y1, . . . , yK ) between the Probability Density Function (PDF) of the data under H1 and
that under H0 with the unknown parameters vector θi (i referring to the selected hypothesis
Hi) of the PDF (amplitude of the target α, covariance matrix M of the noise, etc.) substituted
by their Maximum Likelihood Estimates (MLEs). Then, the GLR Test (GLRT) compares the
GLR statistic, �(y, y1, . . . , yK ) to a given threshold λ selecting H1 when the statistic is above
the threshold, H0 otherwise. This test is defined as follows:

�(y, y1, . . . , yK ) =
max

θ1

p1
c(y, y1, . . . , yK ; θ1)

max
θ0

p0
c(y, y1, . . . , yK ; θ0)

H1
>
<
H0

λ, (8.2)

where pi
c denote the PDF of the cell under test y under each hypothesis Hi.

Under both hypotheses, it is assumed that K ≥ m signal-free data yk are available for clut-
ter parameters estimation. The yks are the so-called secondary data where they are assumed
independent, but their statistical distribution depends on the noise nature. In this chapter, two
cases will be investigated according to the noise statistics: the Gaussian noise and the case of
non-Gaussian noise as modeled by Spherically Invariant Random Vector (SIRV).

In the Gaussian case, c and ck are complex circular zero-mean Gaussian m-vectors sharing
the same covariance matrix M, with distribution denoted by CN (0, M):

pc(c) = 1

πm det(M)
exp

(
−c† M−1 c

)
. (8.3)

This model has been widely used in radar community due to the fact that it is very simple
and can generally fit a lot of experimental data.

8.1.1 Background Parameter Estimation in Gaussian Case
When no prior information on the M-structure is available, the MLE M̂SCM of M is the so-
called Sample Covariance Matrix (SCM), defined as the solution that maximizes the likelihood
function L built with the K signal-free Gaussian secondary data ck :

L(c1, . . . , cK ) =
K∏

k=1

pc(ck) = 1

πm K det(M)K
exp

(
−

K∑
k=1

c†
k M−1 ck

)
. (8.4)

Cancelling the gradient of L with respect to M leads to the well-known solution:

M̂SCM = 1

K

K∑
k=1

ck c†
k . (8.5)

This estimate has a lot of interesting properties:

• It is a consistent and an unbiased estimate.

• K M̂SCM follows the complex Wishart distribution CW(K , M) [1].
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• The asymptotic distribution of M̂SCM is given by [2]

√
K vec(M̂SCM − M)

d−→ GCN
(
0, MT ⊗ M,

(
MT ⊗ M

)
Km2

)
, (8.6)

where Km2 is a m2 × m2-commutation matrix which transforms vec(A) into vec(AT ),
GCN (µ, Σ, Ω) denotes the Generalized Complex Normal distribution with Σ =
E

[
(c − µ) (c − µ)†

]
the covariance matrix, and Ω = E

[
(c − µ) (c − µ)T

]
the pseudo-

covariance matrix.

• The asymptotic distribution of the SCM with its trace equal to m, i.e. M̂
m
SCM = m M̂SCM/

Tr(M̂SCM ) is given by

√
K vec(M̂

m
SCM − M)

d−→ GCN (0, Λ, Ω), (8.7)

where Λ and Ω are defined by⎧⎪⎨⎪⎩
Λ = MT ⊗ M − 1

m
vec(M) vec(M)†,

Ω = (MT ⊗ M) Km2 − 1

m
vec(M) vec(M)T .

(8.8)

8.1.2 Optimal Detection in Gaussian Case
When M is known, the GLRT for an unknown α is given by

max
α

pc(y − α p)

pc(y)
,

where pc is given by (8.3). This leads to the well-known Optimum Gaussian Detector (OGD):

�OGD(y) =
∣∣p† M−1 y

∣∣2

p† M−1 p

H1
>
<
H0

λOGD, (8.9)

where the detection threshold λOGD is related to the PFA according to

λOGD = −log(Pfa).

As for the noise, the covariance matrix M is in general not known and, hence, it has to be
estimated from the data. To this end, two adaptive approaches in Gaussian environment can
be considered:

• Assuming that the secondary data (ck)k∈{1,...,K} share exactly the same spectral properties
of the noise c in the cell under test: this scenario is widely used and is usually referred to as
homogeneous environment. In that case, the covariance matrix of the secondary data and
the one of the cell under test are the same.

• Assuming that the secondary data (ck)k∈{1,...,K} share, up to an unknown scaling factor,
the same spectral properties of the noise c. In that case, the covariance matrices of the
secondary data and the one of the cell under test differ from an unknown scaling factor σ2.
This approach is referred to as partially homogeneous environment.
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8.1.2.1 Homogeneous Gaussian Environment
When the covariance matrix M is unknown, the strategy consists in deriving the exact GLRT
procedure [see also Chapter 3 for more details]:

max
α, M

pc(y − α p)

K∏
k=1

pc(yk)

max
M

K∏
k=1

pc(yk)

H1
>
<
H0

λ,

leading to the well-known adaptive Kelly’s test [3]:

�Kelly(y) =
∣∣∣p† M̂

−1
SCM y

∣∣∣2

(
p† M̂

−1
SCM p

)(
K + y† M̂

−1
SCM y

) H1
>
<
H0

λKelly. (8.10)

The relationship between the PFA Pfa and the detection threshold λKelly is therefore given
by [4]

Pfa =
(

1

λKelly
− 1

)K+1−m

.

On the other hand, the widely used and simpler strategy, called the Two-Step GLRT, is to
develop first the GLRT for M known, i.e. (8.9), and then to substitute for M the SCM leading
to the so-called Adaptive Matched Filter (AMF) test [5]:

�AMF(y) =
∣∣∣p† M̂

−1
SCM y

∣∣∣2

p† M̂
−1
SCM p

H1
>
<
H0

λAMF . (8.11)

The relationship between the PFA Pfa and the detection threshold λAMF is therefore given
by [4, 5]

Pfa = 2F1

(
K − m + 1, K − m + 2; K + 1; −λAMF

K

)
, (8.12)

where 2F1(.) is the hypergeometric function [6] defined as:

2F1(a, b; c; z) = �(c)

�(b) �(c − b)

∫ 1

0

tb−1 (1 − t)c−b−1

(1 − t z)a
dt.

These expressions show that each detection threshold assuring a given PFA is independent of
the clutter covariance matrix (CCM) M: the Kelly and AMF detectors are said to be CFAR
with respect to M.

8.1.2.2 Partially Homogeneous Gaussian Environment
In this case, the noise c in the cell under test y is distributed according to CN (0, σ2 M) while the
secondary signal-free data ck are distributed according to CN (0, M) where σ2 is an unknown
scaling factor. The GLRT is therefore given by



8.1 • Background and Problem Statement 299

max
α,σ2, M

1

πm det(M) σ2 m
exp

(
− (y − α p)† M−1 (y − α p)

σ2

)
K∏

k=1

pc(yk)

max
M

K∏
k=1

pc(yk)

H1
>
<
H0

λ. (8.13)

This GLRT for partially homogeneous environment yields the Adaptive Cosine (or Coherence)
Estimate (ACE) [7], also known as Adaptive Normalized Matched Filter (ANMF) or GLRT-
Linear Quadratic (GLRT-LQ) [8]:

�ANMF(y, M̂SCM ) =
∣∣∣p† M̂

−1
SCM y

∣∣∣2

(
p† M̂

−1
SCM p

) (
y† M̂

−1
SCM y

) H1
>
<
H0

λANMF , (8.14)

where the detection threshold λANMF is related to the PFA λANMF according to:

Pfa = (1 − λANMF)K−m+1
2F1 (K − m + 2, K − m + 1; K + 1; λANMF). (8.15)

When M is known, the corresponding GLRT is known as the Normalized Matched Filter
(NMF) and has been proposed by the authors in References 9 and 10: the problem was under
a Gaussian environment to determine a detector invariant to the scaling factor σ2. Previously,
other authors [11, 12] have proposed this expression:

�NMF(y) =
∣∣p† M−1 y

∣∣2(
p† M−1 p

) (
y† M−1 y

) H1
>
<
H0

λNMF , (8.16)

where the detection threshold λNMF is related to the PFA according to:

λNMF = 1 − P
1

m−1
fa . (8.17)

Finally, it can be observed that, under the H0 hypothesis, the distribution of all the previously
presented decision statistics is independent of the unknown parameter M. All the detectors
OGD, Kelly [3], AMF [5], NMF [9], ANMF [7, 13], possess the CFAR property (i.e. they
have a distribution independent of the noise parameters) when the model is valid, i.e. when the
statistical data model correspond to the reality. The significance of the CFAR property from
a practical point of view is very important: it allows to set the threshold in order to operate
at the desired false alarm rate and not at some value of the probability of deciding H1 when
H0 is valid, lower than the preassigned Pfa. It can be shown that OGD, Kelly’s detector, and
AMF guarantee the CFAR property with respect to M in homogeneous environment and that
the NMF and ANMF guarantee the CFAR property with respect to σ2 and M in the partially
homogeneous one. The interested reader may refer to Chapter 7 of this book for optimum
detection of a signal in complex compound-Gaussian (CG) clutter.

This hypothesis of a Gaussian noise can be not valid anymore because of the statistical
heterogeneity and the non-stationarity of the secondary data used in the estimation process. For
example, for high-resolution radars, the resolution cell containing clutter returns is such that the
Central Limit Theorem cannot be applied anymore since the number of scatterers become too
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small and random. Equivalently, it is known that reflected clutter radar returns could be also very
impulsive in low grazing angle radar [14–16]. This is why, in the last decades, the radar commu-
nity has been very interested on problems dealing with non-Gaussian clutter modeling. If the
clutter is no more homogeneous (clutter transitions) or become non-Gaussian, these detectors
will not guarantee a good false alarm regulation and will degrade their detection performance.

Note that the two detectors (8.14) and (8.16) are homogeneous of degree 0 with respect
to p, y, M, or M̂SCM , in the sense that a scale factor multiplying one of those quantity does
not modify the resulting detector. They can both be considered, with the appropriate scalar
product, as the squared cosine of the angle θ between p and the data vector y collected in the
cell under test and lie between 0 and 1 and can be considered as the steering vector angle
detectors whereas the OGD and AMF characterize the power detector. These angular detectors
will play an important role in the non-Gaussian environment because of this very attractive
scale invariance property.

8.2 Non-Gaussian Environment Modeling
In the literature of radar detection and estimation, SIRV modeling and more recently Complex
Elliptical Symmetric (CES) distributions have been considered and studied for their good
statistical properties and for their good fitting to experimental non-Gaussian radar data.

8.2.1 CES Distribution
In this section, we present the class of CES distributions originally introduced by Kelker [17]
and recently used in radar community [18]. They provide a multivariate location-scale family
of distributions that primarily serve as long tailed alternatives to the multivariate Gaussian
model. They are proven to represent a more accurate characterization of background data
(clutter, impulsive noise) than models based on the multivariate Gaussian assumption. A good
review on these distributions can be found in References 19 and 20.

In the following, it will be assumed, without loss of generality, that the multivariate process
will be zero-mean.

An m-dimensional random complex vector c follows a CES distribution if its characteristic
function is of the form:

�c(u) = φ(u† Σ u),

for some function φ : R+ → R, called characteristic generator, a positive semi-definite matrix
Σ, called the scatter matrix. We shall write c ∼ CES(0, Σ, φ).

Therefore, a random vector c ∼ CES(0, Im, φ) is spherically distributed since �c(u) =
φ(u† u), and every affine transformation of a spherical random vector has an elliptical dis-
tribution. The converse is true, according to the following theorem, when the transformation
matrix has full rank.

8.2.1.1 Stochastic Representation Theorem
An m-dimensional random vector c ∼ CES(0, Σ, φ) with rank(Σ) = k ≤ m if and only if it
admits

c
d= R A U (k),
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where U (k) is a k-dimensional random vector uniformly distributed on the unit complex k sphere
CSk ; R is a non-negative random variable called generating variate, being stochastically inde-
pendent of U (k); 0 ∈ C

m and Σ = A A† is a factorization of Σ where A ∈ C
m×k with rank(A) = k.

The generating variate R determines the distribution’s shape, in particular the tail of the
distribution. Indeed the generating variate can be connected to the characteristic generator via
its cumulative distribution function [20].

The stochastic representation provides a simple manner to simulate elliptically distributed
random vectors. The uniform spherical distribution can be easily obtained from a complex

normal distributed random vector, y ∼ CN (0, Im), when dividing it by its length, U (k) d= y
||y||2 .

Then, the transformation matrix A on the vector U (k) produces elliptically contoured density
surfaces. Thereupon, some knowledge on the Cumulative Distribution Function (CDF) of R
is required to completely determine the shape of the distribution. Remark that the dispersion
on the elliptical distribution is uniquely determined by Σ, and the particular factorization A
adds no information.

From c ∼ CES(0, Σ, φ), it does not follow that c has a PDF. If it exists, it can be related to
the density function of the generating variate R, provided R is absolutely continuous. Then
the PDF of c has the form:

pc(u) = 1

det(Σ)
hm

(
u† Σ−1 u

)
, (8.18)

where hm is any function such as (8.18) defines a PDF in C
m. The function hm is usually

called density generator and it is assumed to be only approximately known. In this case we
shall write CES(0, Σ, hm) instead of CES(0, Σ, φ).

The scatter matrix Σ describes the shape and orientation of the elliptical equidensity con-
tours. If the second-order moment exists, then Σ reflects the structure of the covariance matrix
M, i.e. the covariance matrix is equal to the scatter matrix up to a scalar constant Σ = κ M.
Nevertheless, we can always find an appropriate normalization constraint such that cov(c) = Σ.
This constraint is to take E[R2] = rank(Σ). Note that while the scatter matrix is always defined
up to a scalar constant, the covariance matrix does not exist for some CES distributions
(e.g. Cauchy distribution).

The class of elliptical distributions includes a large number of well-known distributions,
as for instance the multivariate Gaussian [1], the K-distribution [21], or the multivariate
t-distribution [18].

8.2.2 The Subclass of SIRV
In recent years, there has been an increasing interest for non-Gaussian radar clutter distribu-
tion models motivated by experimental radar clutter measurements [14–16] which have shown
that the clutter can be perfectly modeled by K-distribution or Weibull distribution. These dis-
tributions, called Spherically Invariant Random Processes, characterize the CG distributions
[22, 23], i.e. complex CG processes with random power. They represent an important sub-
class of CES distributions widely used in signal processing applications, e.g. wireless radio
propagation problems [24], radar clutter echoes modeling [25–28], hyperspectral background
characterization [29–31].

A random vector c is said to have a CG distribution if it can be written as:

c
d= √

τ x, (8.19)
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where τ is a positive random variable called texture and x an m-dimensional independent
zero-mean circular complex Gaussian vector CN (0, M) called speckle. This vector is called
an SIRV and is characterized by its PDF:

pc(u) = 1

πm det(M)

∫ +∞

0

1

τm
exp

(
−u† M−1 u

τ

)
fτ(τ) dτ, (8.20)

where fτ(.) is the texture PDF. The covariance matrix M has to be normalized, for example
according to Tr(M) = m, for identifiability considerations [32].

This PDF can be put on the more general form:

pc(u) = 1

det(M)
h̃m

(
u† M−1 u

)
, (8.21)

where h̃m(.) is any function such as (8.20) defines a PDF in C
m:

h̃m(t) = 1

πm

∫ +∞

0

1

τm
exp

(
− t

τ

)
fτ(τ) dτ. (8.22)

It is worth pointing out that, as the SIRV are a subclass of CES distributions, they admit the

stochastic representation given by (8.2.1.1). Therefore, c
d= √

τ A x where x ∼ CN (0, I) and
M = A A† any factorization of M with rank(A) = rank(M) = k.

Conditionally to the cell under test or to the unknown scalar texture τ, the vector c is
Gaussian and characterized by the covariance matrix M that identifies the correlation degree
existing on the dimension of the vector x. From cell to cell, the texture τ models the random
power of the observation vector according to the PDF fτ(.) and therefore can handle power
heterogeneity from cell to cell in the secondary data.

Many other interesting and useful properties related to SIRV subclass can be found in
Chapter 7.

8.3 Covariance Matrix Estimation in CES Noise
There has been an intense research activity in robust estimation theory in the statistical com-
munity in these last decades [2, 33–36]. Among several solutions, the so-called M-estimators
originally introduced by Huber [37] and investigated in the seminal work of Maronna [38]
have imposed themselves as an appealing alternative to the classical SCM. They have been
introduced within the framework of CES distributions. M-estimators of the covariance matrix
are however seldom used in the signal processing community. Only a limited case, the Tyler’s
estimator [36,39] also called the Fixed Point Estimator [40] has been widely used as an alter-
native to the SCM for radar applications. Concerning the M-estimators, notable exceptions are
the recent papers by Ollila [19,41–44] who advocates their use in several applications such as
array processing. The M-estimators have also been recently studied in the case of large datasets,
where the dimension of the data is of the same order as the dimension of the sample [45].
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8.3.1 M-Estimators
When no prior information on the Σ-structure is available, the MLE of the scatter matrix Σ is
defined as the matrix which minimizes the negative log-likelihood function:

−
K∑

k=1

log pc(ck) = K log det(Σ) −
K∑

k=1

log hm

(
c†

k Σ−1 ck

)
. (8.23)

Assuming that hm(.) is continuously differentiable and setting to zero the gradient of of the
above expression with respect to Σ leads to fixed point equation:

Σ̂ = 1

K

K∑
k=1

ϕ
(

c†
k Σ̂−1ck

)
ck c†

k , (8.24)

where ϕ(t) = −h′
m(t)/hm(t) characterizes a weighting function that depends on the density

generator hm(.) of the underlying CES distribution and where h′
m(.) denotes the real derivative

of hm(.).
Note that (8.24) is an implicit equation, i.e. the solution is on the left-hand side and also

on the right-hand side. It characterizes therefore a fixed point equation.
For the complex normal distribution characterized by the density generator hm(t) =

π−m exp(−t), we have ϕ(t) = 1 which yields to the SCM defined by (8.5). For the particular
case of SIRV distribution, we obtain ϕ(t) = −h̃′

m(t)/h̃m(t) = h̃m+1(t)/h̃m(t). These estimates
have a drawback: they depend on the density generator of the background and therefore on
the a priori knowledge characterizing the noise. The M-estimators provide an alternative since
the weighting function does not rely anymore on the knowledge of the distribution. The M-
estimators have first been studied in the real case, defined as solution of (8.24) with real samples
cks, and then, results have been extended to the complex case [19, 46].

The Huber estimator is a well-known M-estimator. It is characterized by its corresponding
weighting function ϕ(.) defined by

ϕ(t) = 1

β
min(1, γ2/t),

where γ2 and β depend on a single parameter 0 < q < 1, according to

q = F2 m(2 γ2), (8.25)

β = F2 m+2(2 γ2) + γ2 1 − q

m
, (8.26)

where Fm(.) is the cumulative distribution function of a χ2 distribution with m degrees of
freedom. Thus Huber estimate is the solution of

M̂Hub = 1

Kβ

K∑
k=1

[
ck c†

k 1dk≤γ2

]
+ 1

Kβ
γ2

K∑
k=1

[
ck c†

k

dk
1dk>γ2

]
, (8.27)

where dk = c†
k M̂

−1
Hub ck and 1(.) stands for the indicator function.
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The first summation corresponds to unweighted data which are treated as in the SCM; the
second one is associated to normalized data treated as outliers. In a complex Gaussian context
and when K tends to infinity, it may be shown that the proportion of data treated with the
SCM is equal to q. Moreover the choice of γ2 and β according to (8.25) and (8.25) leads to a
consistent M-estimator of the covariance matrix.

8.3.2 Properties of the M-Estimators
Let (c1, . . . , cK ) be a K-sample vector independent of the dimension m where ck ∼ CES(0, Σ, φ)
and let us consider the VK estimate, solution of the following equation:

VK = 1

K

K∑
k=1

ϕ
(

c†
k V−1

K ck

)
ck c†

k . (8.28)

According to the choice of the function ϕ in (8.28), the estimate VK will be different. Existence
and uniqueness of the solution of (8.28) has been shown in the real case, provided function
ϕ satisfies a set of general assumptions stated by Maronna [38]. These conditions have been
extended to the complex case by Ollila [42]. They are recalled here below:

• ϕ is non-negative, non-increasing, and continuous on [0, ∞).

• Let ψ(s) = s ϕ(s) and α = sup
s≥0

ψ(s). The function ψ is increasing and strictly increasing on

the interval where ψ(s) < α with m < α.

• Let PK (.) denote the empirical distribution of (c1, . . . , cK ). There exists a > 0 such that for
every hyperplane S, dim (S) ≤ m − 1, PK (S) ≤ 1 − m

α
− a. This assumption can be slightly

relaxed as shown in References 47 and 48.

When considering the asymptotic limit of (8.24) which is roughly speaking the limit of (8.28)
when K tends to infinity:

V = E

[
ϕ

(
c† V−1 c

)
c c†

]
, (8.29)

where c ∼ CES(0, Σ, φ), Maronna [38] and Ollila [42] have shown that:

• the implicit equation (8.29) (resp. (8.28)) admits an unique solution V (resp. VK ) and
V = σ−1 Σ where σ is the solution of the following equation: E

[
ψ(σ ||t||2)

] = m with
t ∼ CES(0, Im, φ),

• VK is a consistent estimate of V, i.e. VK
p.s−→

n→∞ V,

• a simple iterative procedure provides VK .

Some Remarks:

• Although the so-called Fixed Point Estimate (FPE) [49] which is defined by (8.28) for
ϕ(x) = m/x and which will be presented in (8.40) has the general form of an M-estimator,
this characterizes a limit case that does not verify the conditions given by Maronna: indeed,
the function ϕ(t) = m/t is not defined in t = 0 and ψ(t) = m is not increasing,

• The SCM given in (8.5) is not an M-estimate according to conditions given by Maronna
because the upper limit of function ψ(.) is infinite,
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• The FPE and SCM seem to characterize the two limit cases of given M-estimator defined
by Maronna: the FPE has the most robust estimate in the CES framework while the SCM
is the optimal estimate in the homogeneous case, i.e. Gaussian case.

8.3.3 Asymptotic Distributions of the M-Estimators
Let (c1, . . . , cK ) be an K-sample of m-dimensional complex independent vectors with
ck ∼ CES(0, Σ, φ), k = 1, . . . , K . We consider the complex M-estimator M̂ which verifies
(8.24), and we denote M the solution of (8.28).

The asymptotic distribution of M̂ is given by [46]

√
K vec(M̂ − M)

d−→ GCN (0, Λ, Ω), (8.30)

where Λ and Ω represent the asymptotic covariance matrix and the asymptotic pseudo-
covariance matrix and are defined by

Λ = σ1 MT ⊗ M + σ2 vec(M) vec(M)†,

Ω = σ1 (MT ⊗ M) Km2 + σ2 vec(M) vec(M)T ,
(8.31)

with ⎧⎪⎪⎨⎪⎪⎩
σ1 = a1 (m + 1)2 (a2 + m)−2,

σ2 = a−2
2

[
(a1 − 1) − 2 a1 (a2 − 1)

(2 a2 + 2 m)2 [2 m + (2 m + 4) a2]

]
,

and {
a1 = [m (m + 1)]−1

E
[
ψ2(σ ||t||2)

]
,

a2 = m−1
E

[
σ ||t||2 ψ′(σ ||t||2)

]
,

where σ is the solution of E[ψ(σ ||t||2)] = m, where t ∼ CES(0, Im, φ).
This result is also given in Reference 19 with other assumptions but without proof.
The result has to be compared to those obtained for the SCM in (8.6) where σ1 = 1 and

σ2 = 0 and for the SCM normalized according to (8.8) where σ1 = 1 and σ2 = −1/m . It shows
that, asymptotically, the behavior of the M-estimate is practically the same than the one of the
SCM, up to properly chosen factors σ1 and σ2.

The study of M-estimators shows that the estimated scatter matrix M̂ is reflecting structure-
type information but not scale information. This leads to the following important property. Let
H(.) be a r-dimensional multivariate function on the set of m × m positive-definite symmetric
matrices with continuous first partial derivatives and such as H(M) = H(α M) for all α > 0.
It means that for any homogeneous of degree 0 function H(.):

H(Σ) = H(α Σ) = H(M) = H(α M). (8.32)

Whereas Tyler has derived similar result for real M-estimates [50], Mahot [46] and Ollila [19]
have derived the following and very important theorem:
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Theorem 8.3.1 Let M be a fixed complex Hermitian positive-definite matrix and M̂ a
sequence of Hermitian positive-definite random matrix estimates of order m satisfying (8.30).
Thus, one has

√
K

(
H(M̂) − H(M)

) d−→ GCN (0, ΛH , ΩH), (8.33)

where ΛH and ΩH are defined as:

ΛH = σ1 H′(M) (MT ⊗ M) H′(M)†,

ΩH = σ1H′(M)(MT ⊗ M) Kr H′(M)T ,
(8.34)

and H′(M) = dH(M)

dvec(M)
= (h′

ij) with h′
ij = ∂hi

∂mj
where vec(M) = (mi).

When the data have a complex Gaussian distribution, the SCM is a complex Wishart matrix.
Moreover, the SCM estimator verifies the conditions of the property and its coefficients (σ1, σ2)
are equal to (1, 0). Complex normalized M-estimators also verify the conditions of the theorem.
Thus they have the same asymptotic distribution as the complex normalized Wishart matrix,
up to a scale factor σ1 depending on the considered M-estimator. The same conclusion will
hold for the FPE [36, 40] since it verifies the assumptions of Theorem 8.3.1 for a specific
standardization.

In practice, H(.) may be a function which associates a parameter of interest to a covariance
matrix. This scale-invariant property has also been exploited in Reference 41. The concerned
signal and radar processing applications are those in which multiplying the covariance matrix
by a positive scalar does not change the result. This is the case for instance for direction of
arrival estimation problems when using the MUSIC method. Another example is given by
adaptive radar processing in which the parameter is the ANMF test statistic [4, 7]. Here, H is
defined by

M̂ −→ H(M̂) =
∣∣∣p† M̂

−1
y
∣∣∣2

(
p† M̂

−1
p
) (

y† M̂
−1

y
).

Another example is given by

M̂ −→ H(M̂) = m M̂/ Tr(M̂),

leading to covariance matrix normalization constraint like Tr(H(M̂)) = m.
Let us give an illustration of Theorem 8.3.1. Let us consider an adaptive radar receiv-

ing an m-vector y. The estimated covariance matrix of the Gaussian environment is M̂, and
the aim is to detect signals of steering vector p. This steering vector defines for example to
Doppler steering vector. The ANMF �ANMF(y, M̂) given in (8.14) has been computed for
M̂ = M̂SCM and for the complex Huber’s M-estimator M̂ = M̂Hub defined in (8.27). In
Figure 8.1, the vertical scale represents the variance of �ANMF obtained with the SCM and the
complex Huber’s M-estimator. The horizontal scale represents the number of samples used to
estimate the covariance matrix. A third curve represents the variance of �ANMF for σ1 K data.
As one can see, it overlaps the SCM’s curve, illustrating Theorem 8.3.1. The coefficient σ1 is
here equal to 1.067. This results shows, even in Gaussian environment where the optimal MLE
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Figure 8.1 Variances on the ANMF detector built with Huber’s estimate with q = 0.75 and with
the SCM estimate, with spatially white Gaussian additive noise.

covariance matrix is the SCM, one can obtain the same performance than the SCM ones with
another estimate, here the Huber’s estimator, by using a little bit more secondary data. This also
means that the loss of performance (comparing to the optimal solution) can be theoretically
derived for all M-estimators-based approaches, thanks to Theorem 8.3.1.

Now, let us consider a K-distributed environment, with shape parameter firstly equal to 0.1
and then 0.01 for a more impulsive noise. Figure 8.2 whose scales are the same as in Figure 8.1
shows that the SCM is not robust in a non-Gaussian context contrary to Huber’s M-estimator.
Indeed, the more the noise differs from a Gaussian noise, the more the detector’s variance is
deteriorated in that case while it still gives good results with Huber’s M-estimator.

8.3.4 Link to M-Estimators in the SIRV Framework
In the SIRV background, it becomes clear that the SCM defined by (8.5) is not a good estimate
of the speckle covariance matrix M. Assuming that K secondary SIRV data ck are available,
the SCM estimate is clearly polluted by the texture information:

M̂ = 1

K

K∑
k=1

ck c†
k = 1

K

K∑
k=1

τk xk x†
k 
= 1

K

K∑
k=1

xk x†
k . (8.35)

A simple solution to build a texture invariant covariance matrix estimate has been proposed by

Gini and Conte. It consists in normalizing the data ck by their norm
√

c†
k ck before using the

SCM estimate. This leads to define the Normalized SCM (NSCM) estimate:

M̂NSCM = m

K

K∑
k=1

ck c†
k

c†
k ck

= m

K

K∑
k=1

xk x†
k

x†
k xk

. (8.36)
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Figure 8.2 Variances on the ANMF detector built with the Huber’s estimate and with the SCM,
for K-distributed additive noise with various shape parameters ν = 0.01 and ν = 0.1.

This very simple estimate clearly does not depend on the texture τk but it is biased and non-
consistent (except when M = Im) as proven in Reference 51.

8.3.4.1 Deterministic Texture
In Reference 52, the authors have suggested to set the random parameters {τk}k∈{1,...,K} as
unknown deterministic parameters. In that case, conditionally to the unknown deterministic
texture parameter τ, the SIRV PDF is Gaussian with the following PDF:

pc(ck|τk , M) = 1

πm τm
k det(M)

exp

(
c†

k M−1 ck

τk

)
. (8.37)

The corresponding likelihood function to maximize with respect to M and τks is given by

K∏
k=1

pc(ck|τk , M) = 1

πm K det(M)K

K∏
k=1

1

τm
k

exp

(
−c†

k M−1 ck

τk

)
. (8.38)

Maximization of (8.38) with respect to τks, for a given M, leads to

τ̂k = c†
k M−1 ck

m
, (8.39)
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and then by replacing the τks in (8.38) by their MLEs τ̂ks, we obtain the reduced likelihood
function:

1

πm K det(M)K

K∏
k=1

mm exp (−m)(
c†

k M−1 ck

)m .

Finally, maximizing this latter expression with respect to M leads to true MLE, called the
FPE and given by the following equation:

M̂FP = m

K

K∑
k=1

ck c†
k

c†
k M̂

−1
FP ck

. (8.40)

Note that this latter equation can be rewritten from (8.19) as

M̂FP = m

N

K∑
k=1

xk x†
k

x†
k M̂

−1
FP xk

. (8.41)

Equation (8.41) shows that M̂FP does not depend at all on the texture τks but only on the
Gaussian vectors xks.

8.3.4.2 Random SIRV Texture
In the SIRV framework, the MLE M̂ of the covariance matrix M is obtained following the
same procedure given for those of the CES distributions detailed in Section 8.3.1:

M̂ = 1

K

K∑
k=1

h̃m+1

(
c†

k M̂
−1

ck

)
h̃m

(
c†

k M̂
−1

ck

) ck c†
k . (8.42)

Later, Gini, Conte et al. have obtained in References 53 and 54 exactly the same expression.
Gini [53] has plotted (this is reported in Figure 8.3), for different values of the K-distribution
shape parameter ν, the function t → ϕ(t) = h̃m+1/h̃m(t) given by

ϕ(t) =
√

ν

µ t

Kν−m−1
(√

4 ν t/µ
)

Kν−m
(√

4 ν t/µ
) . (8.43)

In the case of Student-t distribution, the weighting function is given by

ϕ(t) = ν + 2 m

ν + 2 t
. (8.44)

They are plotted in Figure 8.4 for different values of parameter shape ν. Note that ν = 0 leads
to FPE while ν = +∞ leads to SCM.

For the particular choice ϕ(t) = m/t, the solution of this implicit equation is the FPE and
it is related to the exact MLE given by (8.40) and found when considering texture as deter-
ministic unknown parameter. Gini, Conte et al. have also called this estimate the Approximate
ML estimate M̂FP. One of the good properties of the FPE is that it remains independent of the
a priori hypothesis made on the PDF of the noise. Figures 8.3 and 8.4 show that the particular
FP function ϕ(t) = m/t has practically the same behavior than many other K-distributions or
Student-t ϕ functions.
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Figure 8.3 Plot of the ϕ(.) functions for various shape parameters ν of the K-distribution (m = 8,
µ = 1). Comparison with the FP function ϕ(t) = m/t.

Existence and uniqueness of the FPE have been proven in Reference 49, while the complete
statistical properties of M̂FP have been derived in Reference 55. The convergence of the
following recursive scheme:

Mn+1 = m

K

K∑
k=1

ck c†
k

c†
k M−1

n ck

n ≥ 1, M0 ∈ C
m×m,

whatever the initialization given by any definite positive matrix M0 has also been proven
in Reference 49. Hence, one can choose M0 = M̂SCM given in (8.5) but another candidate
could be simply M0 = Im. For this last choice, the first step of the recursive scheme yields to
M1 = M̂NSCM , that is characterizing at the first step of this algorithm a quite good estimate. Note
that the solution is always defined up to a scaling factor: if M is solution, α M, with any α > 0,
is also solution. The identifiability condition Tr(M) = m helps in defining a unique solution.

The statistical properties of the FPE have been described in Reference 55. The FPE M̂FP

is unbiased and consistent. Its asymptotic distribution is given by

√
K vec(M̂FP − M)

d−→ GCN (0, Λ, Ω),

where Λ and Ω are defined by

Λ = m + 1

m

(
MT ⊗ M − 1

m
vec(M) vec(M)†

)
,

Ω = m + 1

m

(
(MT ⊗ M) Km2 − 1

m
vec(M) vec(M)T

)
.

(8.45)
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Figure 8.4 Plot of the ϕ(.) functions for various shape parameters ν of the Student-t (m = 8).
Comparison with the FP function ϕ(t) = m/t.

It is important to note the similitude between (8.45) and (8.31) where σ1 = (m + 1)/m and
σ2 = −(m + 1)/m2 and also between (8.45) and (8.8). The FPE and the NSCM have the same
asymptotic properties: the same asymptotic distribution with the same asymptotic covariance
matrix up to the scalar (m + 1)/m. It means that

√
Kvec(M̂

m
SCM − M) and

√
K ′vec(M̂FP − M)

converge exactly toward the same distribution with K ′ = m + 1
m K . For a higher number of sec-

ondary data K , the FPE built with K ′ data behaves like NSCM with K = m
m+1 K ′ data. The

consequence is that all the previous statistical results obtained with the SCM (AMF, ANMF
distributions for example) can be extended to those built with the FPE, but with a higher number
of secondary data.

Example: it is clear that the ANMF detector defined in (8.14) is invariant to any scale factor on
the SCM (for instance, its trace). It means that the two following detectors�ANMF(y, M̂SCM ) and
�ANMF(y, M̂

m
SCM ) are both equal and have therefore the same detection/threshold relationship

in Gaussian noise environment:

Pfa = (1 − λANMF)K−m+1
2 F1 (K − m + 2, K − m + 1; K + 1; λANMF). (8.46)

Consequently, the ANMF �ANMF−FP
(

y, M̂FP
)

built with the FPE:

�ANMF−FP(y) =
∣∣∣p† M̂

−1
FP y

∣∣∣2

(
p† M̂

−1
FP p

) (
y† M̂

−1
FP y

) H1
>
<
H0

λANMF−FP (8.47)



312 CHAPTER 8 • Covariance Matrix Estimation in SIRV and Elliptical Processes

will verify (for K large enough) the following detection/threshold relationship:

Pfa = (1 − λANMF−FP)K ′−m+1
2F1

(
K ′ − m + 2, K ′ − m + 1; K ′ + 1; λANMF−FP

)
, (8.48)

with K ′ = m

m + 1
K .

8.4 Optimal Detection in CES Noise
For many types of SIRV and CES distributions, it can be possible to derive the associated
optimal GLRT detector. However, the likelihood ratio test associated to the detection test can
rarely be put on a closed-form expression that makes it very difficult to handle for practical
ways. Moreover, the parameters defining the density generator have to be estimated each time
when the noise characteristics are changing. Several works have allowed to establish from
different ways a same form of very interesting and powerful detector:

• The NMF proposed by Scharf [9, 10]: the problem was however, in the Gaussian context,
to derive a detector invariant to any scaling factor (the variance). In the SIRV or CES back-
ground, this scaling factor is logically the texture. Previously, Korado [11] and Picinbono
[12] have already obtained the same expression.

• The GLRT-LQ also called ANMF has been derived by Conte [8] and Gini [32]. It has
been obtained when considering asymptotical form of optimal detector for K-distributed
noise.

• Sansgton et al. in Reference 52 have derived this detector when considering the SIRV
texture as deterministic and replacing it by its MLE (GLRT).

• The asymptotic BORD (Bayesian Optimum Radar Detector) defined by Jay [56, 57] has
been derived from Bayesian modeling of the texture PDF and in an asymptotical way when
number of secondary data K is infinite.

However, all these detectors require a correct estimate of the SIRV covariance matrix.
When M is known and texture τ is unknown, the model has been widely studied through

the NMF defined by (8.16).
When M is unknown, one solution is to substitute a given estimator M̂ of M in (8.16)

resulting in an adaptive version of the GLRT.
When replacing M by an any estimator M̂, this detector is often called ACE [58] or ANMF.
In this context, SIRV or CES MLE based on secondary data like (8.42) and (8.24) or

extended M-estimators could be more judiciously chosen. Some specific M-estimates, like
the FPE given in (8.41) are invariant with respect to the texture. As the estimator M̂FP does
not depend on the texture and as the ANMF detector is homogeneous of degree 0, one can
obtain a very powerful adaptive detector ANMF which is invariant with the SIRV or CES
texture:

�ANMF−FP(y) =
∣∣∣p†M̂

−1
FPy

∣∣∣2

(
p†M̂

−1
FPp

) (
y†M̂

−1
FPy

) H1
>
<
H0

λANMF−FP. (8.49)
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Using the asymptotic property (8.45) and Theorem 8.3.1 with H(.) defined by the ANMF
detector, the relationship between the PFA Pfa and the detection threshold λANMF−FP can be
clearly expressed [59]:

Pfa = (1 − λANMF−FP)a−1
2F1(a, a − 1; b − 1; λANMF−FP), (8.50)

where K ′ = m
m+1 K , a = K ′ − m + 2, and b = K ′ + 2.

For other M-estimates M̂, the relationship between the PFA Pfa and the detection threshold
λANMF of the ANMF built with M̂ can be also expressed:

Pfa = (1 − λANMF)a−1
2F1(a, a − 1; b − 1; λANMF), (8.51)

where K ′ = K/σ1, a = K ′ − m + 2, and b = K ′ + 2.

8.5 Persymmetric Structured Covariance Matrix Estimation
In order to increase the radar processing performance (for instance, in a detection problem), one
solution is to use a priori information on the CCM, leading to a more accurate estimate. Toeplitz
structure has been addressed by Burg [60] while Fuhrmann [61] used this estimator for radar
detection purposes. In radar systems using a symmetrically spaced linear array with constant
pulse repetition interval, the CCM exhibits a persymmetric structure. Then, this structure
information could be exploited to improve detection performance. In this context, we use a
particular linear transformation in order to take into account the persymmetry of the CCM
and to study the statistical property of new detectors for both Gaussian and non-Gaussian
environments. For Gaussian data, the CCM ML estimator has been derived in Reference 62. The
corresponding GLRT has been investigated in Reference 63. For non-Gaussian clutter modeled
by SIRV, detection schemes have been proposed in References 64 and 65. In Reference 64, the
persymmetry is only exploited to build two sets of independent data in order to derive a SIRV-
CFAR detector: the Persymmetric ANMF (P-ANMF). In Reference 65, these sets are used to
initialize an iterative algorithm simultaneously proposed in References 53 and 54. This allows
to the derivation of the Recursive P-ANMF (RP-ANMF). Our approach, based on the Fixed
Point ANMF (FP-ANMF), also called GLRT-FP [53, 54], exploits an original transformation
proposed in Reference 66 for Gaussian case and in Reference 67 for non-Gaussian case. This
leads to the Persymmetric FP-ANMF (PFP-ANMF), also called GLRT-PFP. The approach is
to transform the complex CCM into a real matrix, leading to a simpler problem. Moreover this
approach allows the derivation of the statistical analysis of the proposed detection scheme.

It is clear that the estimation accuracy of M̂ has an important impact on the adaptive detection
performance in both Gaussian and non-Gaussian clutters. M̂SCM and M̂FP defined by (8.5)
and (8.40) do not take into account any prior information on the CCM structure. However
many applications lead to a CCM which exhibits some particular structure, and considering
this structure may lead to an improvement in both estimation and detection performances.
Such a situation is frequently met in radar systems using a symmetrically spaced linear array
and a symmetrically spaced pulse train for temporal domain processing [60, 63, 64]. In these
systems, the CCM M has the persymmetric property, defined as follows:

M = Jm M∗ Jm,
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where Jm is the m-dimensional antidiagonal matrix having 1 as non-zero elements. The steering
vector of the problem is also persymmetric, i.e. it satisfies

p = Jm p∗.

Exploiting the persymmetric structure will be done by means of the transformation matrix
T introduced in Reference 68 and whose properties are recalled in the following proposition.

Proposition 51 Let T be the unitary matrix defined as:

T =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
2

(
Im/2 Jm/2

j Im/2 −j Jm/2

)
for m even,

1√
2

⎛⎜⎜⎝
I(m−1)/2 0 J(m−1)/2

0
√

2 0

j I(m−1)/2 0 −j J(m−1)/2

⎞⎟⎟⎠ for m odd.

(8.52)

Persymmetric vectors and Hermitian matrices are characterized by the following properties:

• p ∈ C
m is a persymmetric vector if and only if T p is a real vector.

• M is a persymmetric Hermitian matrix if and only if T M T† is a real symmetric matrix.

Using Proposition 51, the original problem (8.1) can be equivalently reformulated. Let us
introduce the transformed primary data x, the transformed secondary data xk , the transformed
clutter vector n, and the transformed signal steering vector s defined as: x = T y, xk = T yk ,
s = T p, n = T c, nk = T ck .

It follows that the transformed signal steering vector s and the transformed CCM are both
real. Then, the original problem (8.1) is equivalent to{

H0 : x = n xk = nk , for k = 1, . . . , K ,

H1 : x = α s + n xk = nk , for k = 1, . . . , K ,
(8.53)

where x ∈ C
m, s is a known real vector.

In the Gaussian case, under hypothesis H0, n and the K transformed secondary data xk are
i.i.d. and share the same CN (0, R) distribution where R = T M T† is a real symmetric matrix
according to Proposition 51. In the non-Gaussian case, one has

n = √
τ h, (8.54)

nk = √
τk hk , (8.55)

where h = T g and hk = T gk denote the transformed speckle vector with the same real covari-
ance matrix R = T M T†. n and nk are still SIRVs with the same texture and CCM R = T M T†.
From now on, the problem under study is the problem defined by (8.53). The proofs of the
results of the next sections can be found in Reference 69.
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8.5.1 Detection in Circular Gaussian Noise
Let us first investigate the MLE of the real covariance matrix R from the K secondary data xk .
The main motivation for introducing the transformed data is that the resulting distribution of
the MLE of R is very simple. This was not the case in Reference 62 when dealing with the
original secondary data yk with persymmetric covariance matrix.

The MLE R̂P of the real matrix R is unbiased and is given by

R̂P = Re(R̂SCM ), (8.56)

where

R̂SCM = 1

K

K∑
k=1

xk x†
k = T M̂SCM T†. (8.57)

R̂P is an unbiased estimator and K R̂P is real Wishart distributed with parameter matrix 1
2 R

and 2K degrees of freedom.
Actually, taking into account the real structure of R (or equivalently the persymmetric

structure of M) in the ML estimation procedure allows to virtually double the number of
secondary data. Let us now consider the AMF for the detection problem (8.53) based on the
estimator R̂P defined by (8.56). This leads to the following detection test, called the PS-AMF:

�PS−AMF =
∣∣∣s† R̂

−1
P x

∣∣∣2

s† R̂
−1
P s

H1
>
<
H0

λPS−AMF , (8.58)

or equivalently, in terms of the original data:

�PS−AMF =
∣∣∣p† T†

[
Re(T M̂SCM T†)

]−1
T y

∣∣∣2

p† T†
[
Re(T M̂SCM T†)

]−1
T p

H1
>
<
H0

λPS−AMF . (8.59)

The distribution of (8.58) is well known when K R̂P is complex Wishart distributed with
parameter matrix K R and K degrees of freedom: this is the classical AMF distribution [5].
However, in our problem, K R̂P is real Wishart distributed with parameter matrix 1

2 R and
2K degrees of freedom while x is complex. The relationship between Pfa and the detection
threshold λPS−AMF is given by

Pfa = 2F1

(
2 K − m + 1

2
,

2 K − m + 2

2
;

2 K + 1

2
; −λPS−AMF

K

)
. (8.60)

8.5.2 Detection in Non-Gaussian Noise
We address in this section the non-Gaussian case for the detection problem (8.53). The additive
SIRV noise n is defined by

n = √
τ h, (8.61)
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where τ is a positive random variable, and h is a zero-mean circular complex Gaussian vector
with real covariance matrix R. The K secondary data nk = √

τk hk are i.i.d. and share the same
distribution as n.

Since the transformed covariance matrix R is real, its structure may be taken into account
in the estimation procedure by retaining only the real part of the FPE. This leads to the
proposed covariance estimator called the Persymmetric Fixed-Point (PFP) since it results from
the persymmetric structure of the original speckle covariance matrix:

R̂PFP = R(R̂FP), (8.62)

with

R̂FP = T M̂FP T†. (8.63)

The statistical properties of the detector �ANMF−PFP can be investigated under the null
hypothesis H0:

• The distribution of R̂PFP does not depend on the texture.

• R̂PFP is a consistent estimator of R.

• R̂PFP is an unbiased estimator of R.

• When R̂ is real Wishart distributed with m
m+1 2 K degrees of freedom and parameter matrix R,

R̂PFP/ Tr
(
R−1 R̂PFP

)
and R̂/ Tr

(
R−1 R̂

)
have the same asymptotic distribution.

The adaptive GLRT, for the transformed problem (8.53), based on (8.16) and on the PFP
estimator becomes

�ANMF−PFP =
∣∣∣s† R̂

−1
PFP x

∣∣∣2

(
s† R̂

−1
PFP s

) (
x† R̂

−1
PFP x

) H1
>
<
H0

λANMF−PFP. (8.64)

The detector �ANMF−PFP is SIRV-CFAR. For large K , under hypothesis H0, �ANMF−PFP

distribution cannot be expressed in a closed form but it has the same distribution as

� =
∣∣∣e†

1Ŵ
−1

w
∣∣∣2(

e†
1Ŵ

−1
e1

)(
w†Ŵ

−1
w

) where w ∼ CN (0, I), e1 = (1, 0, . . . , 0)T and where Ŵ is real Wishart

distributed with parameter matrix I and K ′ = m
m+1 2 K degrees of freedom.

In the context of non-Gaussian clutter, Conte and De Maio [64, 65] have proposed two
detectors derived respectively from the GLRT with some different estimators: the P-ANMF
and the RP-ANMF. In Reference 64, the persymmetry property is only used to separate their
original set of secondary data nk into two new uncorrelated and then independent sets of data
rek and rok , in order to render the detector matrix-CFAR and improve the performance in terms
of detection. These new vectors have the same size as the original and share the same texture.
Their speckle components are i.i.d. and zero-mean complex Gaussian vectors. These new sets
of secondary data allow to introduce their new estimator of the covariance matrix:

Σ̂ = 1

K

K∑
k=1

rek r†
ek(

rokr†
ok

)
i,i

, (8.65)

where (A)i,i stands for any (i, i)th element of the matrix A.
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The previous estimator is then replaced in the classical NMF given by (8.16) and leads to
define the P-ANMF detector:

�P−ANMF = |p† Σ̂−1 x|2(
p† Σ̂−1 p

) (
x† Σ̂−1 x

) H1
>
<
H0

λP−ANMF . (8.66)

In Reference 65, the same method is used to define two set of secondary data rek and rok ,
and the FP matrix estimator Σ̂(inf) is found by using the recursive procedure:

Σ̂(t+1) = N

K

K∑
k=1

rek r†
ek

r†
ek

(
Σ̂(t)

)−1
rek

, (8.67)

with starting point:

Σ̂(0) = 1

K

K∑
k=1

rek r†
ek(

T rokr†
ok T†

)
i,i

. (8.68)

This estimator is next replaced in the NMF (8.16) to provide the RP-ANMF:

�RP−ANMF =
∣∣∣p† Σ̂−1

(inf) x
∣∣∣2

(
p† Σ̂−1

(inf) p
) (

x† Σ̂−1
(inf) x

) H1
>
<
H0

λRP−ANMF . (8.69)

Please note however that, as stated in Reference 49, the solution Σ̂(inf) of the implicit FP
matrix equation is unique and does not depend on the starting point.

In order to compare all these detectors, NMF with M known or with the classical SCM,
ANMF-FP, ANMF-PFP, P-ANMF, and RP-ANMF, Figure 8.5(a) presents the PFA versus the
detection threshold for all these detectors while Figure 8.5(b) shows the PD versus the Signal
to Noise Ratio (SNR). The simulated impulsive clutter is settled to be K-distributed.

These figures show the improvement in terms of detection of the RP-ANMF over the
conventional ANMF-SCM (which cannot be efficient with non-Gaussian data) but also the
improvement of the ANMF-PFP against all the other detectors. Moreover, theoretical results
based on the asymptotic Wishart distributions of R̂FP and R̂PFP (circle lines) are displayed: it
can be noticed that simulated results are in very good agreement with the theory.

8.6 Radar Applications
This section is devoted to the analysis of different radar measurements in which the clutter is
strongly impulsive. In a first time, let us give some generalities.

8.6.1 Ground-Based Radar Detection
The ground clutter data presented in this chapter were collected by an operational radar at
THALES Air Defence, placed at 13 m above ground and illuminating the ground at low grazing
angle. Ground clutter complex echoes were collected in N = 868 range bins for 70 different
azimuth angles and for m = 8 recurrences, which means that vector size is m = 8. Near the
radar, echoes characterize non-Gaussian heterogeneous ground clutter whereas beyond the
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Figure 8.5 Comparison between radar performance for various non-Gaussian detectors in
simulated K-distributed clutter characterized by its parameter ν with Pfa = 10−3,
m = 8, K = 16, and ν = 0.2. (a) Theoretical and experimental PFA–threshold curves
for various non-Gaussian detectors. (b) Probability of detection versus SNR for various
non-Gaussian detectors.

radioelectric horizon of the radar (around 15 km) only homogeneous Gaussian thermal noise
(the dark part of the map) is present (Figure 8.6). The analysis of these radar data allows to adjust
the detection threshold λ for a given PFA. Traditionally, the experimental detection threshold
adjustment is determined by counting, by moving a rectangular CFAR-sliding window of size
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Figure 8.6 Ground clutter data level (in dB) corresponding to the first pulse.

5 × 5. For all central cells of the mask (i.e. the cell under test) corresponding to the studied
observation y (8-vector), a value of �(M̂) is calculated. The covariance matrix M̂ has so been
estimated with the set of K = 24 vectors, considered as the secondary data, y1, . . . , y24, and
situated around the tested cell.

To see the CFAR losses, we plotted the PFA–threshold relationship for a perfectly known

covariance matrix (λ = 1 − P
1

m−1
fa ). Notice that this equation has just a theoretical interest

because in practice, M is always unknown. It can be used as benchmark for all the adap-
tive detectors.

On the left of Figure 8.7, the solid curve corresponds to the theoretical relationship
“PFA–threshold” if M is known while the dotted curve represents the theoretical relation-
ship “PFA–threshold” when M is assumed unknown and estimated by M̂FP. The curve made
of crosses (×) represents the experimental (made with CFAR masks by counting) relation-
ship “PFA–threshold” when M is estimated by M̂FP. It perfectly matches the theoretical
relationship. Obtaining this result has been possible only because the detector �(M̂FP) satisfies
the M-CFAR property, essential in an heterogeneous clutter. An essential consequence of this
result is that thanks to (8.50), the clutter training is not essential any more for the adjustment
of the detection threshold.

8.6.2 Nostradamus Radar Detection
Similar analyses performed on experimental sea clutter data give the same conclusion.
Figure 8.8 shows the sea clutter signal (range bins versus pulse repetition interval and range-
Doppler) collected by the operational Over The Horizon radar from the French Aerospace
Lab (ONERA) illumining the Atlantic ocean, and its associated range-Doppler image. In this



320 CHAPTER 8 • Covariance Matrix Estimation in SIRV and Elliptical Processes

100 101 102 103 104 10510–3

10–2

10−1

100

Threshold  η

P f
a

m = 8 and k = 8

−20 −15 −10 −5 0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

Pd

ANMF

P-ANMF

ANMF
P-ANMF
Theo. NMF M Known
Theo. ANMF
Theo. P-ANMF

ANMF
P-ANMF

Theo. NMF
M known

P-ANMF

ANMF
Theo. ANMF

Theo. P-ANMF

Figure 8.7 Detection performance on THALES data for �(MFP) and �(RPFP) for Pfa = 10−2,
m = 8, and K = 8. Top: PFA–threshold relationship η = (1 − λ)−m on THALES
data. Bottom: Probability of detection on THALES data.

context, we use a set of m = 8 pulses of the signal on the entire range bins group and K = 16
reference range bins to estimate the covariance matrix. Figure 8.9 shows the improvement in
detection performance on these data and the agreement between theoretical (circle line) and
practical (solid line) results.

8.6.3 STAP Detection
Space Time Adaptive Processing (STAP) is a recent technique used in airborne phased array
radar to detect moving target embedded in an interference background such as jamming or
strong clutter. STAP is a two-dimensional adaptive filtering technique which uses jointly
temporal and spatial dimensions to suppress interference and to improve target detection.
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Figure 8.8 Atlantic Ocean sea clutter data collected by ONERA Over The Horizon
Radar Nostradamus. Top: Sea clutter data from an over the horizon radar. Bottom:
Range-Doppler image of Atlantic Ocean sea clutter.

It can be shown that the STAP algorithm is classically based on the collected data whitening
operation when the interference is a Gaussian process (AMF). In that case, the covariance
matrix of the noise is often estimated by the classical SCM built from the secondary data
collected around the range bin under test. When the noise is non-Gaussian or heterogeneous,
detection performance of the AMF-SCM significantly decreases. This section is devoted to the
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improvement of STAP detection performance in a non-Gaussian or non-homogeneous back-
ground. Without loss of generality, the problem addressed here below is focused on the GMTI
(Ground Moving Target Indicator) case, i.e. when the antenna is looking to the ground.

Let us now consider a source with amplitude A0, located at azimuth angle θ0 and in
a range gate j with Doppler fd,0, the STAP detection problem addressed here consists in



8.6 • Radar Applications 323

deciding between two hypotheses as presented in (8.1). Difference with classical detection
is that the so-called steering vector contains both temporal and spatial information as it results
in a Kronecker product. According to previous discussions, various detectors will be tested
on the STAP dataset: AMF with SCM (AMF-SCM), PS-AMF (exploiting the persymmetric
structure), ANMF with the FPE (ANMF-FP), and PFP-ANMF.

The STAP data presented here are provided by the DGA/CELAR’s simulator that allows to
synthetize, in side looking configuration, STAP datacubes from very high-resolution Synthetic
Aperture Radar (SAR) collected by ONERA SETHI system. The number of uniform linear
array sensors is L = 4, and the number of coherent pulses is M = 64. The center frequency and
the bandwidth are, respectively, equal to f0 = 10 GHz and B = 5 MHz. The radar velocity is
given by V = 100 m/s. The inter-element spacing is d = 0.3 m and the pulse repetition frequency
is fr = 1 kHz. The number of secondary data used to estimate the covariance matrix of size m =
M L = 256 is here K = 410 (under the Brennan’s rule K < 2M L) for all the presented results.

The set of data contains ten targets at the range bin 255, with speeds from −4 m/s to 4 m/s.
Figures 8.10 and 8.11 refer respectively to AMF-SCM, PS-AMF, ANMF-FP, and PFP-ANMF.
Firstly, it may be noted that the AMF-SCM yields very poor results. Secondly, the best result
is again provided by the PFP-ANMF which takes into account both the non-Gaussianity of the
clutter and the persymmetry structure of the covariance matrix.

The experimental data exploited in this work lead to two main results. Firstly, non-Gaussian
detectors based on the ANMF and the FPE outperform conventional Gaussian detectors based
on the AMF and the SCM. Secondly, exploiting the persymmetric structure of the covariance
matrix yields an additional improvement in terms of detection. This makes the PFP-ANMF an
interesting detector for STAP radars.

8.6.4 Robustness of the FPE
To conclude this section, let us present some criteria that allow to quantify the notion of
robustness. This is of interest for radar applications with some mismodeling, some missing data,
or contaminated data. Standard covariance matrix estimation processes can be very affected
by either the presence of outliers in the data or some mismatch on their statistical model.
In the SIRV framework, it is possible to analyze the robustness of the SCM, the NSCM,
and the FPE in disturbances context by deriving the theoretical bias arising from random
disturbances (ak)k∈{1,...,P}, with P < K/2, in the data (yk)k∈{1,...,K} used to build these estimates.
Thus, y1, . . . , yK may be split into two sets:{

yk = ak for 1 ≤ k ≤ P,

yk = ck for P < k ≤ K .
(8.70)

The superiority of these two estimates is then highlighted when (ck)k∈{P+1,...,K} are Gaussian
distributed and corrupted by some P strong random disturbances. This robustness can be of
any help for applications such as adaptive radar detection or sources localization methods.

8.6.4.1 SCM Bias Analysis with Disturbances
The difference ∆SCM between statistical expectation of the contaminated covariance matrix
and the bias of the non-contaminated covariance matrix E[M̂SCM] = M can be written as:

∆SCM = 1

K

P∑
k=1

E

[
ak a†

k

]
− P

K
M.
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Figure 8.10 AMF Doppler-azimuth detection results in a range bin containing ten targets with
different velocities. Top: AMF with SCM. Bottom: PS-AMF.
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Figure 8.11 ANMF Doppler-azimuth detection results in a range bin containing ten targets with
different velocities. Top: ANMF with FPE. Bottom: PFP-ANMF.
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Figure 8.12 SCM (top) and FP (bottom) relative Frobenius norm errors (gray scale) versus
disturbances power (x-axis) and percentage P/K of contaminated observations
(y-axis) in Gaussian noise.

It can be noted that stronger the disturbances norm ||ak|| is, more important the bias is. The
SCM covariance matrix is not robust.

8.6.4.2 NSCM Bias Analysis with Disturbances
The difference ∆NSCM between statistical expectation of the contaminated covariance matrix
and the bias of the non-contaminated covariance matrix E[M̂NSCM] (
=M because NSCM
estimate is biased) can be written as:
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∆NSCM = − P

K
M + m

K

P∑
k=1

E

[
ak a†

k

a†
k ak

]
.

8.6.4.3 FPE Bias Analysis with Disturbances
In that case, the bias ∆FP = E[M̂FP] − M of the contaminated FP covariance matrix can be
found to be

∆FP = m + 1

K

(
P∑

k=1

E

[
ak a†

k

a†
k M−1 ak

]
− P

m
M

)
.

In the two last previous cases, it can be noted that the strength ||ak|| of the disturbance does
not influence the bias results. Every scaled factor on the vector {ak} leaves the bias invariant.
The NSCM and FPE are therefore said to be robust to disturbances.

To analyze the robustness of these estimates, some simulations are presented in the con-
taminated Gaussian context [70]. For all figures, the relative error (Frobenius norm) between
contaminated and non-contaminated covariance matrix estimates is represented (in dB) for
different percentage numbers P/K ( y-axis) and different power level (x-axis) of the distur-
bances. Note that for a given percentage of contamination, the total power is shared between
all the disturbances. Results on Figure 8.12 demonstrate the robustness of the FPE while the
SCM estimate is strongly degraded by the disturbances.

8.7 Conclusion
As developed in this chapter, the detection performances are strongly linked to the covariance
matrix estimation process. Several estimation methods have been studied through the statistical
properties of the estimators. Then, they have been used in various detection problems on
simulated data and real datasets. These results have enlightened the interest of using advanced
estimation methods. Notice that there was not an exhaustive presentation of the different
covariance matrix estimation approaches. Recently, to tackle the problem of few secondary
data, as well as to deal with robustness matters, improved regularization techniques have been
introduced [71–74]. One can also mentioned the promising framework of the Random Matrix
Theory with some recent results in robust covariance matrix estimation for signal processing
applications [45, 75, 76].
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CHAPTER 9

Detection of Extended Target in
Compound-Gaussian Clutter
Augusto Aubry1, Javier Carretero-Moya2,
Antonio De Maio1, Antonio Pauciullo3,
Javier Gismero-Menoyo2, and
Alberto Asensio-Lopez2

9.1 Introduction
It is a well-established fact that it is possible to achieve a significant performance improvement
in maritime surveillance applications by deploying high-resolution radar systems. Recent tech-
nological breakthrough in key areas such as real-time digital signal processing hardware, or
very high-bandwidth radio frequency (RF) front-ends, is now turning radar systems foreseen
two decades ago [1, 2] into a practical reality.

The size reduction of the resolution cell is the straightforward technique to diminish distur-
bance returns in the very frequent distributed-clutter-limited detection scenario. However, this
approach has at least two issues that must be accounted for in the radar design process to benefit
from the potential performance improvement. First, if the range resolution goes beyond a cer-
tain specific threshold, targets will be over-resolved and their energy will be distributed across
several adjacent range bins. Matching the range resolution as close as possible to the physical
dimensions of the target to be detected is a possible way to circumvent this problem. However,
several works have shown that properly designed detectors for targets distributed across several
range cells, or distributed targets,4 outperform lower resolution systems in which the target is

1Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, Università degli Studi di Napoli “Federico
II”, Napoli, Italy
2Departamento de Senales, Sistemas y Radiocomunicaciones, Escuela Tecnica Superior de Ingenieros de Telecomu-
nicacion, Universidad Politecnica de Madrid, Madrid, Spain.
3CNR, IREA, Napoli, Italy.
4Also referred to as over-resolved, range-spread, or extended targets.
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confined within a single range cell [3–5]. Radar backscatter from range-resolved target scat-
terers exhibits a less fluctuating behavior that may improve the detection performance [6]. In
conventional low-resolution radar systems, the overall target radar cross section (RCS) is the
vector sum of randomly phased contributions resulting in large power fluctuations of the signal
received by the radar [1]. This has been traditionally characterized by the well-known Swerling
target models [7], and it is the source of additional detection losses,5 which are significantly
reduced in high-resolution systems.

Second, high-resolution sea-clutter is characterized by a marked non-Gaussian behavior
that makes the development of suitable detection schemes difficult [8]. The distinct statistical
properties of high-resolution sea-clutter must be correctly taken into account to guarantee
a satisfactory performance. Theoretical considerations [9–11] and the statistical analysis of
experimental data [12–16] have shown the validity of the compound-Gaussian framework
[17] for high-resolution sea-clutter modeling. Specifically, for short time intervals sea-clutter
samples can be considered realizations from spherically invariant random vectors (SIRVs)
[18–22]. The interested reader may refer to Chapter 7 of this book for a detailed discussion on
the compound-Gaussian models.

In this chapter, experimental data from a Ka-band high-resolution radar system are used to
evaluate the performance of several schemes for coherent detection of distributed targets. The
importance of this analysis relies on the possibility of exploiting detectors for range-spread
targets in modern applications for homeland security. A careful border control is crucial to
avoid illegal immigration or drug trade by means of very small boats (such as inflatable or
wooden boats). It is thus of great interest to assess the capability of a high-resolution radar
system to detect such kind of small targets which, at the resolutions of the data available in
this chapter (0.10 m, 0.20 m, and 1 m), appear range-spread.

The chapter is organized as follows. In Section II, a review concerning the state of art
in range-distributed radar detection is presented and the detection strategies, whose perfor-
mances are analyzed in the chapter, are introduced and commented. In Section III, the available
clutter data and their main statistical features are described. Therein, some statistical analy-
ses concerning target data are also presented, with emphasis on the capability of common
amplitude distributions (usually adopted in radar literature to describe target fluctuations) to
represent them. In Section IV, the constant false alarm rate (CFAR) behavior of the consid-
ered detectors is studied in correspondence of real clutter data at different sub-meter range
resolutions. In Section V, the detection performance is assessed: first the case of a synthetic
target injected in real clutter is considered and then the case of a real target (precisely an inflat-
able boat) embedded in real clutter is tackled. Finally, concluding remarks are provided in
Section VI.

9.2 Distributed Target Coherent Detection

9.2.1 Overview
Early theoretical contributions to the topic of range-distributed target detection focused on non-
coherent systems and date from well before the widespread development of the technologies
required for its practical implementation [2,6,23–25]. Experimental evidence already showed

5With regard to the non-fluctuating case.
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that the radar properties of common targets were well modeled as the result of the reflection
from a few isolated points. The few specular reflector target model and its implications were
analyzed by Nitzberg in 1978 [6]. In this reference, it was shown that a better performance
is obtained when the radar bandwidth is such that the individual scatterers are just resolved
and each becomes a non-fluctuating target. The important concept of collapsing losses was
defined as the output signal-to-clutter power ratio (SCR) loss associated with the integration of
target-/scatterer-free range cells in the detection process. Nitzberg’s work was based on a radar
target simulation model that consisted of a few equal magnitude and equispaced reflectors. This
limitation was soon overcome. A number of different target models were used in Reference 2
to account for non-uniform scatterer configurations in terms of both spatial distribution and
amplitude variations. Two high-resolution strategies were compared: an integrated detector,
non-coherently adding the power of Hs adjacent range bins prior to thresholding, and a “1
out of Hs” binary detector operating on the thresholded high-resolution bins. Both approaches
consistently outperformed the lower resolution counterpart. However, the relative performance
of the high-resolution detectors was found to be heavily dependent on the target scattering
characteristics, or more precisely, on the range distribution of the target specular or flare points.
The integrated detector suffered from collapsing losses for those target models in which the
energy of the target was heavily concentrated in range.

A priori knowledge of the spatial scattering density of the target can be incorporated into
the detector design to minimize collapsing losses. Gerlach and Steiner [26] derived the single
pulse generalized likelihood ratio test (GLRT) detector for a distributed target in Gaussian
noise. The use of a specific scattering density function approximately equal to the binomial
distribution was found to result in a particularly compact form for the GLRT. The a priori
knowledge on the spatial scatterer distribution was controlled by a single parameter capa-
ble of modeling both extreme situations: a target with returns highly concentrated or evenly
distributed in range. For the latter case, it is interesting to note that the GLRT developed
becomes the integrated detector previously mentioned [2]. For other non-uniform but still
a priori known scatterer distributions, the GLRT effectively suppresses the contribution of
noise-only range cells in the formation of the detection statistic. As a consequence, the collaps-
ing loss of the conventional integrated detector due to the sparse target structure is minimized.
The performance of the GLRT single pulse detector was also found to be better than the binary
integrator. However, the results assumed perfect knowledge of the parameters of the target
spatial distribution.

A completely different approach was proposed in References 24 and 25 with the distinct
feature of considering other scattering centers of the target as an additional source of non-
homogeneity in the reference window of the detector. A temporal and spatial clutter map
was modified to include a censoring step to eliminate the contamination introduced by other
scattering centers of the target.

The interest of the radar community is now mainly focused on the development of dis-
tributed target detectors for coherent systems. However, certain non-coherent techniques have
been recently proposed. An example is Reference 27 where the fact that sea-clutter spikes are
spatially localized is exploited to discriminate between targets and sea-clutter returns through
spatial extension.

It is convenient to classify coherent detection strategies for distributed targets in the cate-
gories shown in Table 9.1, based on both the target and the clutter models used in their design
process, and which result in different detector forms. The detection techniques included in
Table 9.1 are briefly described in what follows.
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Table 9.1 Classification of distributed target detection schemes.

Target model Gaussian clutter Non-Gaussian clutter

Rank-one One-step GLRT, two-step NSDD-GLRT, SDD-GLRT [28], adaptive GLRT [5],
GLRT [3], MGLRT [29] Rao test and Wald test [30], AMGLRT [31]

Subspace CFAR tests [32] DSM-GLRT, GSM-GLRT [4], GLRT,
Rao test and Wald test [33]

9.2.2 Rank-One Steering
The problem of adaptive detection of partially known6 distributed targets in Gaussian clut-
ter with unknown covariance was addressed in Reference 3 relying on two different design
procedures: a direct GLRT and a two-step GLRT. Following the latter, two computationally
efficient GLRT structures were derived based on the N-dimensional vectors of primary data
(r(1), . . . , r(Hs)) (returns from Hs adjacent range cells characterized by the potential presence of
target scatterers) and assuming that the covariance matrix of the disturbance (two-step GLRT)
or its structure (modified two-step GLRT) were known. The adaptive detectors were obtained
by substituting the unknown covariance matrix or covariance structure by its estimate based
on a secondary dataset (r1, . . . , rK ) or reference window free of target components (K ≥ N).
The resultant detectors, under the design assumptions, share the CFAR behavior with respect
to the unknown clutter parameters and a performance close (modified two-step GLRT) or even
superior (two-step GLRT) than the direct, one-step GLRT when the actual target is matched
to the nominal subspace. The results also clearly showed the detection gain associated with
higher range resolutions.

Several works have developed suitable detection structures [5,28,30] for the non-Gaussian
clutter scenario that is very appropriate for the statistical description of echoes backscattered
from the sea surface. In Reference 28, Gerlach developed two detectors, the non-scatterer
density-dependent GLRT (NSDD-GLRT) and the scatterer density-dependent GLRT (SDD-
GLRT). The former, obtained under the assumption that the target scatterers are distributed
completely across Hs range cells and whose derivation is reported in Appendix 9.A.1.1 for
completeness, has the form:

−
Hs∑

t=1

ln

[
1 −

∣∣p†Σ−1r(t)
∣∣2

(p†Σ−1p)(r(t)†Σ−1r(t))

] H1
>
<
H0

TNSDD (9.1)

where p is the N-dimensional complex vector representing7 the unit norm temporal steering
vector, whose n-th entry is

p(n) = 1√
N

exp( j2π(n − 1) fd) (9.2)

6Known up to a complex constant. A single and common steering vector for all range cells.
7Without loss of generality, in this chapter we assume a unit norm steering vector.
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with fd being the normalized Doppler frequency associated with all of the target scatterers and
j the imaginary unit. Σ is the known structure of the clutter covariance matrix, and TNSDD is a
threshold chosen to guarantee a predetermined probability of false alarm (Pfa).

It should be noted that in the argument of the ln(·) function appears the well-known nor-
malized matched filter (NMF) for point-like target detection in compound-Gaussian clutter,
which has been derived following different strategies [34–37]. In Reference 34, Conte et al.
found that the asymptotic evaluation of the probability density function (PDF) of SIRV clut-
ter, for increasingly high number of temporal samples, leads to a GLRT test whose decision
statistic is independent of the clutter distribution. The NMF was then obtained by adopting
that test even for the case of a finite number of integrated temporal samples. An alternative
derivation was proposed by Gini [35], where it was shown that a detector of the same form
could be obtained through a GLRT approach considering the texture as an unknown determin-
istic parameter. Additionally, Scharf [36] found that the NMF is the uniformly most powerful
invariant (UMPI) test for detecting a target signal, known up to a multiplicative factor, in Gaus-
sian noise. Finally, in a recent work, De Maio and Conte [37] have proved the UMPI claim
to the non-Gaussian SIRV case provided that the texture PDF complies with a mild specific
condition, usually satisfied by common practical texture distributions.

As the NSDD-GLRT takes the form of an integrator of identical functions of the data over a
pre-specified number of Hs range cells, it suffers from collapsing losses for targets that are not
distributed across all of the processed range bins. In the few specular reflector target model,
only a fraction of the Hs range cells will be occupied by target scatterers, and therefore noise-
only contributions to the value of the test statistic will degrade the detection performance. To
account for this, and in a similar approach as in Reference 26, a priori knowledge about the
spatial density of the target scatterers can be incorporated into the detector design resulting in
the SDD-GLRT.

The NSDD-GLRT assumed perfect knowledge of the clutter covariance matrix structure
Σ. The development of an adaptive variant was tackled in Reference 5, by resorting to a
secondary dataset to estimate the unknown clutter covariance structure. Additionally, the pro-
posed detector also features the possibility of including a priori knowledge on the degree of
range correlation of the clutter power, ranging from the totally independent case (as for the
NSDD-GLRT detector) to an homogeneous scenario. The developed detector, under the design
assumptions, ensures the CFAR property with respect to both the structure of the covariance
matrix and the power backscattered from each range cell. It is interesting to note that the
two-step detector developed ends up coincident with an adaptive version of the NSDD-GLRT
for the case that the clutter power is independent from range cell to range cell. In a recent
paper [38], the performance of the two-step adaptive GLRT has been compared with that of
the optimum Neyman–Pearson detector for K-distributed clutter.

Similar assumptions on the clutter statistics are also made in Reference 30. Therein, two
additional detection structures are proposed based on the Rao and Wald tests, as it is shown
that no uniformly most powerful test exists for the detection problem under consideration.
Both detectors are also CFAR with respect to the unknown statistics. As reported in Appendix
9.A.1.2, assuming again that the clutter power changes from range cell to range cell, the Rao
test becomes

Hs∑
t=1

∣∣p†Σ−1r(t)
∣∣2

(p†Σ−1p)(r(t)†Σ−1r(t))

H1
>
<
H0

TRao (9.3)
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The equation shows that the Rao test is the arithmetic mean along the range dimension of
the NMF test statistic [39]. Similarly, as reported in Appendix 9.A.1.3, the Wald test is

Hs∑
t=1

∣∣p†Σ−1r(t)
∣∣2

(p†Σ−1p)

[
(r(t)†Σ−1r(t)) − |p†Σ−1r(t)|2

(p†Σ−1p)

] H1
>
<
H0

TWald (9.4)

and its performance, on simulated data, is reported to outperform both the two-step GLRT and
the Rao test.

The previously mentioned detectors assume that the target signal is known within a complex
scale factor. However, since the target Doppler is usually unknown, in a practical scenario the
radar processor usually takes the form of a detector bank, in which each channel is matched
to a different hypothetical target Doppler.

9.2.3 Subspace Steering
Robustness to partial uncertainty in the target Doppler response may be incorporated by spec-
ifying a multi-dimensional (subspace) target representation [40]. Otherwise stated, the signal
to be detected is a deterministic N-dimensional vector that is known to belong to a subspace of
dimension r (where 1 ≤ r ≤ N). A signal subspace of dimension one represents the case where
the signal to be detected is a known N-dimensional vector (precisely, known within a complex
multiplicative constant). Similarly, a signal subspace of dimension N (i.e. r = N) represents
the case where the signal to be detected is an unknown deterministic N-dimensional vector. It
is possible to account for partial uncertainty with regard to the signal to be detected by using
a value of r between 1 and N .

According to the linear subspace signal model, the target signal at the t-th range cell, x(t)
say, can be modeled as the N-dimensional complex vector:

x(t) = Hθ(t) (9.5)

where θ(t) is an r × 1 unknown vector and H is a known N × r matrix frequently called steering
or mode matrix [40–42]. The signal therefore belongs to the linear subspace spanned by the
columns of the matrix H.

In the context of coherent high-resolution radar detection, it is possible to use the subspace
signal model to account for targets distributed both in Doppler and range. The columns of
the mode matrix H are temporal steering vectors, complying with the structure (9.2), whose
Doppler frequencies can be chosen according to the following criteria:

(1) Discretize the normalized Doppler interval [−0.5, 0.5] into N bins.

(2) For a Doppler bin of interest (DBI), one column of H is tuned to the central Doppler of
the DBI, while the other columns are tuned to the central frequencies of k(h) adjacent
Doppler bins preceding (following) the DBI. Additionally, k + h + 1 = r.

For practical values of N , namely N ≥ 8, quite often r is chosen equal to 3, namely the
column vectors of H are tuned to the central frequencies of the DBI and two adjacent (one
preceding and one following) Doppler bins.
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Scharf produced key contributions to the problem of detecting signals that comply with a
subspace model in Gaussian clutter. In particular, the matched subspace detector (MSD) was
developed for detecting an unknown deterministic signal known to lie in a specific subspace
[43–46]. The approach was extended by Gini and Farina [40, 42, 47] for CFAR detection of a
subspace signal against compound-Gaussian clutter with known covariance structure:

r†Q2r
r†Σ−1r

H1
>
<
H0

T (9.6)

with

Q2 = Σ−1H(H†Σ−1H)−1H
†
Σ−1 (9.7)

where r denotes the data under test. It can be shown that r†Q2r is proportional to the energy
of the whitened received data vector component which lies within the whitened target signal
subspace, whereas the quadratic form r†Σ−1r is proportional to the overall energy in the
whitened received signal space. Detector (9.6) is the generalized MSD or GMSD. For practical
applications, Σ should be adaptively estimated [45,48], in order to get a fully adaptive receiver.
The interested reader may refer to Chapter 8 of this book for further details on covariance matrix
estimation techniques in SIRV processes.

Subspace detectors have been recently extended to the distributed target scenario [4,
32, 33]. For the Gaussian disturbance case, Jin and Friedlander [32] developed a subspace
decomposition-based CFAR structure for the detection of a range-distributed target modeled
as a Gaussian vector. In Reference 4, two GLRT detectors are derived for compound-Gaussian
clutter: the deterministic scatterer model GLRT (DSM-GLRT) and the Gaussian scatterer
model GLRT (GSM-GLRT). In the former, the complex amplitude vector of the target model,
i.e. θ(t), is considered as an unknown deterministic value whereas in the latter θ(t) is modeled
as a complex Gaussian random vector with unknown covariance matrix. Actually, when the
steering matrix is reduced to a steering vector, the developed DSM-GLRT reduces to Gerlach’s
NSDD-GLRT.

In this chapter, the following subspace detectors have been evaluated [33] for 1 ≤ r < N :

Hs∑
t=1

r(t)†Q2r(t)

r(t)†Σ−1r(t)

H1
>
<
H0

TRAO (9.8)

−
Hs∑

t=1

ln

[
1 − r(t)†Q2r(t)

r(t)†Σ−1r(t)

] H1
>
<
H0

TGLRT (9.9)

Hs∑
t=1

r(t)†Q2r(t)

(r(t)†Σ−1r(t)) − (r(t)†Q2r(t))

H1
>
<
H0

TWALD (9.10)

which are, respectively, the natural generalization to a subspace signal model of the Rao test,
GLRT, and Wald test considered in the previous subsection. Indeed, if r = 1 then H reduces to
a column vector and (9.8), (9.9), and (9.10) simplify to, respectively, (9.1), (9.3), and (9.4).

Finally, it should be noted that it is possible to resort to detectors that assume no
a priori knowledge on the target signal form (i.e. r = N). In particular, in Reference 49,
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some invariant detectors for Gaussian environment are proposed: 1S-GLRT, 2S-GLRT, M2S-
GLRT, etc. Unfortunately, this approach cannot be pursued in the presence of heterogeneous
non-Gaussian disturbance since modeling the texture and the steering vectors as unknown
quantities leads to an ill-posed estimation problem (parameter space for the GLRT computa-
tion too large).

9.2.4 Covariance Estimation
The adaptive implementations of any of the detectors discussed requires the on-line estimation
of the covariance matrix structure from a secondary dataset. A number of different strategies
for the estimation of such a covariance matrix structure have been proposed, and they have a
significant effect on the performance of the corresponding detection structure. It is common
to exploit the sample covariance matrix (SCM) as the basis of adaptive implementations of
coherent detectors for Gaussian noise. However, the SCM is not the maximum likelihood (ML)
estimator of the covariance matrix of a SIRV [50–52], but for the case of completely correlated
textures among the secondary data [53]. The SCM estimator has the form:

S = 1

K

K∑
k=1

rkr†
k (9.11)

in which K is the number of range bins used in the estimation process. Another alternative is
the normalized SCM (NSCM) estimator [54, 55]:

Σ̂NSCM = 1

K

K∑
k=1

rkr†
k

1
N r†

krk

(9.12)

in which the contribution of each range cell within the secondary data is equalized by means
of an estimate of its power.

Developing an estimator that guarantees the CFAR property is a complex task. The latest
developments are based on recursive algorithms that approximate the ML estimator for the
covariance matrix of an SIRV. In this chapter, a recently proposed recursive algorithm is
considered: the recursive persymmetric (RP) estimator of Reference 56.

The adaptive NMF (ANMF) using the RP estimator has been shown to be CFAR against
SIRV clutter with spatially varying statistics and exploits the persymmetric structure of the
covariance matrix [57]. A related covariance estimator, used for example in the recursive
ANMF [58] is not included in this chapter as it is suited for symmetric power spectral densities
(PSDs), and it has been already reported that it suffers a severe performance degradation when
the actual PSD of the clutter does not comply with this assumption. This is the case of sea-
clutter, which exhibits a non-zero average Doppler shift related to the average speed of wave
crests [15]. For completeness, we report the expression for the RP estimator8 [56]:

Σ̂RP (i + 1) = N

K

K∑
k=1

rekr†
ek

r†
ekΣ̂

−1
RP (i) rek

(9.13)

8For our purposes, a generic element from the principal diagonal of the matrix in the denominator of (9.14) can be
used.
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Σ̂RP (0) = 1

K

K∑
k=1

rekr†
ek[

Trokr†
okT†
]

(l,l)

(9.14)

with

rek = 1√
2

(rk + Jr∗
k ) (9.15)

rok = 1√
2

(rk − Jr∗
k ) (9.16)

where J is the permutation matrix

J =

⎡⎢⎢⎢⎣
0 0 · · · 0 1
0 0 · · · 1 0
...

...
...

...
...

1 0 · · · 0 0

⎤⎥⎥⎥⎦ (9.17)

T = (I + J) + j(I − J), and I is the identity matrix. The number of iterations can be set to
3 as it has been shown to provide a good trade-off between computational complexity and
performance [56, 59].

The aforementioned detection structures rely on the availability of a target-free secondary
dataset, sharing with the range cells under test common disturbance statistical properties
(covariance matrix or covariance structure). In practical scenarios, this requirement is rarely
met. Frequent sources of secondary data heterogeneity include the presence of nearby additional
targets, clutter boundaries, and discretes, and even the intrinsic non-stationarity of the clutter
background (as is the case of sea-clutter). Several approaches have been proposed to mitigate
this problem, such as reducing the sample support required through colored loading [60, 61],
fast converging algorithms [62], structured covariance estimators [63–65], knowledge-aided
techniques [66–74], data selection techniques [75–82], or parametric approaches [83–85].

In this context, it is worth mentioning that several authors have developed detection tech-
niques capable of operating without the aid of secondary data. This is the case of the detector
structure derived with a modified GLRT (MGLRT) technique, proposed in Reference 29 for
Gaussian clutter backgrounds. Therein, a procedure to make it upper bounded CFAR is also
suggested. A similar approach was followed in Reference 31 to derive the adaptive modified
generalized likelihood ratio test (AMGLRT) detector for the detection of range-distributed
targets in compound-Gaussian clutter. The AMGLRT, whose derivation is reported for com-
pleteness in Appendix 9.A.2, is also part of the detectors evaluated in this chapter and is the
following decision rule:

det(ZS−1
1 Z†)

detp

[
(I − pp†)ZS−1

1 Z†(I − pp†)
] H1

>
<
H0

TAMGLRT (9.18)
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where

• Z = [r(1), . . . , r(Hs)], with Hs ≥ N ;
• S1 = 1

N diag(r(1)†(I − pp†)r(1), . . . , r(Hs)†(I − pp†)r(Hs));
• detp ( · ) is the positive determinant, namely the product of the positive eigenvalues of the

square matrix argument.

Finally, it should be noted that it is possible to build a target detector resorting to a two-level
detection algorithm. This ad hoc approach consists of any single range cell detector followed
by a “m out of Hs” binary integrator, and its performance has been analyzed in References 29
and 86. This approach has not been considered in this chapter as its performance, evaluated
in Reference 29, has been shown to be poorer than the aforementioned techniques that jointly
process the complete Hs primary data.

9.3 High-Resolution Experimental Data
An in-house developed high-resolution continuous wave linear frequency modulated
(CWLFM) radar was used during 2006 to collect experimental maritime target and sea-clutter
data. The main characteristics of the radar system are detailed in Table 9.2 [87]. It is a Ka-band,
HH polarized, and fully coherent system, transmitting a CWLFM waveform between 28 and
30 GHz [88]. A bandwidth of up to 2 GHz can be transmitted, and therefore the maximum
theoretical range resolution achieved is 7.5 cm. The system has certain distinct features, such
as a heterodyne RF architecture that minimizes the required sampling frequency by providing
tunable range limits [89]. It is also field-reconfigurable, as the main parameters of the mod-
ulating waveform can be easily modified according to the specific needs of each application.
This feature has been used to acquire data corresponding to three different range resolutions:
0.10 m, 0.20 m, and 1 m, or equivalently to bandwidths of 2 GHz, 1 GHz, and 200 MHz. Addi-
tionally, an optical video camera fitted with 200 mm focal length lens and aligned with the
antenna system allows the radar operator to simultaneously perform optical and radar target
recordings.

The performance of the system has been tested in different applications, ranging from road
traffic monitoring [90] to inverse synthetic aperture radar (ISAR) imaging of vessels [91]. In
this chapter, sub-meter range resolution real radar data corresponding to small maritime targets
and target-free sea-clutter acquisitions will be used to evaluate the experimental performance
of range-distributed target detectors.

Table 9.2 Radar features.

Type CWLFM

Tx. freq. 28–30 GHz
Tx. bandwidth 2 GHz (Max.)
Modulation freq. 5,000 Hz (Max.)
Beam width 3◦ (pencil-beam)
Tx. power 30 dBm
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Table 9.3 Measurement configurations.

Parameter Details

Azimuth angle 138◦ and 180◦ (Wind 270◦)
Bandwidth 200 MHz, 1 GHz, 2 GHz
Range and grazing angle 1,080 m (∼2.6◦) and 1,755 m (∼1.6◦)

9.3.1 Sea-Clutter Data
Experimental low-grazing-angle sea-clutter time series were recorded at the south coast of
Spain, with the radar system located on top of a 50 m maritime traffic control tower overlook-
ing the Gibraltar Strait. Different measurement configurations were used to assess the poten-
tial impact of different parameters in the statistical properties of high-resolution sea-clutter
(Table 9.3). The database comprises 95 measurements with different combinations of azimuth
angle, bandwidth, and range/grazing angle. The estimated value of the clutter-to-noise ratio
in the datafiles is 15 dB. During the measurement field trials, the sea state was inferred from
local weather station data to be between 3 and 4 on the Beaufort scale.

The key result of the statistical analysis of the database [15] is the extension of the domain of
applicability of the compound-Gaussian clutter model to range resolutions of a few centimeters.
The main findings are as follows:

(1) The bi-parametric generalized K-distribution with log-normal (LN) texture usually pro-
vides a very good fit to the empirical overall amplitude PDF of the data [12]. However,
at the range resolution of 0.10 m, the conventional LN distribution is the most suitable
model for the amplitude PDF.

(2) Short bursts of sea-clutter samples can be modeled as SIRVs (except for the case of 0.10 m
range resolution).

(3) The statistics of the speckle are Gaussian for a range resolution of a few centimeters.
The coherence length of the sea texture has been estimated. The results are physically
reasonable and compatible with previous works (100–150 ms). In agreement with the
results for the overall PDF, the extracted texture component follows an LN distribution
(but for the case of 0.10 m range resolution).

(4) The power-law family of spectral models is a good approximation to the average spectral
behavior of the data.

(5) The sea-clutter datafiles exhibit strong fluctuations of both the spectral shape and the
clutter amplitude between nearby range cells: there is a severe spectral non-homogeneity
as the PSD changes even between adjacent range cells.

Figure 9.1 shows an example of the assessment of the suitability of several different theoretical
distributions to model the overall amplitude PDF of the data. Results correspond to a repre-
sentative upwind 200 MHz bandwidth datafile. The empirical estimated PDF is included in
the figure as well as the fits provided by commonly used distributions following a moment
matching procedure: Rayleigh, Weibull, LN, K [92], K plus thermal noise (K + N) [93], and
generalized K with generalized gamma texture (GK) and LN texture (GK-LNT) [12,94]. The
good fit achieved by the GK-LNT distribution is further supported by the comparison between
the theoretical and estimated higher order normalized moments shown in Figure 9.1b.
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Figure 9.1 Experimental high-resolution sea-clutter data. Overall amplitude PDF. Range resolu-
tion 1 m. (a) Overall amplitude PDF analysis and (b) goodness-of-fit test: normalized
higher order moments.

A representative example of the spectral heterogeneity of the data is shown in Figure 9.2
as it will be useful for the interpretation and analysis of the detection performance results
of the following sections. Sea-clutter amplitude fluctuations are clearly visible in the range
cell against time representation of Figure 9.2a. An estimate of the PSD of each range cell
is included in Figure 9.2b, by resorting to a Welch modified periodogram with 50% overlap
between Hamming weighted samples. The shown periodogram has been normalized to the
estimated power in each range cell to focus on the spectral shape as in Reference 95. Strong
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Figure 9.2 Spectral heterogeneity of high-resolution sea-clutter experimental data. Range
resolution 0.20 m. (a) Range against time representation and (b) normalized PSD
per range cell.

fluctuations of both the spectral shape and the clutter power are evident from the results included
in Figure 9.2a and 9.2b. The assessment of the impact of these effects in the performance of
coherent distributed target detection schemes is a key aim of this chapter.

9.3.2 Maritime Target Data
Simultaneous video and radar recordings of small non-cooperative maritime targets were per-
formed in several trials. Among the target data within the database, four small vessels have
been selected as representative examples of targets of special interest for upcoming maritime
surveillance radar systems (in particular, border control and related homeland security appli-
cations): a rigid-hulled inflatable boat (Zodiac), a small wooden boat, a patrol boat, and a two
mast sailboat. A frame of the video recording of each one is shown in Figure 9.3. An example of
the corresponding radar data in range against time representation is shown in Figure 9.4a–9.4d
where it is also evident the effect of the target wake.

The few specular reflector model or multiple dominant scatterer (MDS) model was intro-
duced in Section 9.2.1. Figure 9.5 shows the qualitative validity of this model for the experimen-
tal target data used in this work. Three range profiles have been extracted from the range–time
data matrix and are shown in Figure 9.5b–9.5d. The specific temporal locations are marked in
Figure 9.5a. The profiles highlight that the experimental radar returns are sparsely distributed,
as supported by other recent high-resolution openly available works such as References 96 and
97. The potential collapsing losses, consequence of the integration of low-SNR range bins in
between target flare points, will be discussed in this chapter.

It is also interesting to analyze the target fluctuations. It is well known that the radar
backscatter from a target depends on a large number of unknown and time-varying factors,
such as geometry, target size, or aspect angle [98, 99]. As a consequence, the target RCS has
been traditionally considered a random variable, characterized by different fluctuation models
beginning with the early work of Swerling [7], later extended in Reference 100 to account for
additional fluctuation laws through the use of the chi-square distribution. Since then, several
theoretical distributions for the target amplitude have been proposed as the LN, Weibull, K,
and generalized chi [101].
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(a) (b)

(d)(c)

Figure 9.3 Experimental maritime target data: optical video frames. (a) Target A: rigid-hulled
inflatable boat; (b) Target B: small wooden boat; (c) Target C: patrol boat; and (d)
Target D: two mast sailboat.

In this chapter, an experimental validation of several target fluctuation models has been
performed. In what follows, α = |α| exp( jθ) is the complex parameter accounting for the target
fluctuation. It is usually assumed that θ is uniformly distributed in (−π, π], whereas the target
amplitude |α| is characterized by a specific PDF [101]:

• Swerling chi target fluctuation model

p|α|(r) = 2mmr2m−1

�m�(m)
exp

(
−mr2

�

)
, r > 0 (9.19)

with the parameter m > 0 ruling the depth of the amplitude fluctuation. For m = 1, the
Swerling chi model coincides with the Rayleigh distribution. The non-random amplitude case
is characterized by m = ∞.

• LN target fluctuation model

p|α|(r) = 1

rσ
√

2π
exp

(
− ln2 (r/μ)

2σ2

)
, r > 0 (9.20)
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Experimental maritime target data: Target A
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Experimental maritime target data: Target B
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Experimental maritime target data: Target D
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Figure 9.4 Experimental maritime target radar data. (a) Target A: sampling rate 1,000 Hz. Range
resolution 0.10 m. (b) Target B: sampling rate 1,000 Hz. Range resolution 0.20 m. (c)
Target C: sampling rate 1,000 Hz. Range resolution 0.20 m. (d) Target D: sampling
rate 1,000 Hz. Range resolution 0.20 m.

• Weibull fluctuation model

p|α|(r) = c

b

( r

b

)c−1
exp
[
−
( r

b

)c]
, r > 0 (9.21)

• K-distribution fluctuation model

p|α|(r) =
√

2ν
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1

2ν−1�(ν)

(√
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(√
2ν

a
r

)
, r > 0 (9.22)

• Generalized K-distribution with LN texture (GK-LNT)

p|α|(r) = r√
2πσ2

∫ ∞

0

2

t2
exp

(
− r2

t
− 1

2σ2
[ln(t/δ)]2

)
dt, r > 0 (9.23)
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Figure 9.5 MDS model assessment. (a) Extracted range profiles’ locations on range–time repre-
sentation; (b) Range profile 1; (c) Range profile 2; and (d) Range profile 3.

A moment matching procedure has been implemented to fit the empirical distribution with the
theoretical models. In the Swerling chi case, the mean square value � has been set equal to the
one estimated from the real data. The parameter ruling the depth of the amplitude fluctuation m
has been chosen so as to minimize the Cramer–Von Mises distance between the empirical and
theoretical cumulative distribution functions (CDFs), following the methodology proposed in
Reference 101.

To evaluate the suitability of each model, six different techniques have been used:

(1) Evaluation of the root mean square error (RMSE) for each distribution, defined as:

RMSE =
√√√√ 1

M

M∑
k=1

∣∣∣f|α|(xk | η̂) − f̂|α|(xk)
∣∣∣2 (9.24)

where f|α|(xk | η̂) is the theoretical distribution of the data for the estimated parameter
vector η̂ and f̂|α|(xk) is the estimated PDF from the data, evaluated at the M points xk’s.
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Figure 9.6 Target A: fluctuation model empirical evaluation. (a) Amplitude empirical PDF and
theoretical models and (b) normalized higher order moment comparison.
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Figure 9.7 Target B: fluctuation model empirical evaluation. (a) Amplitude empirical PDF and
theoretical models and (b) normalized higher order moment comparison.

(2) Evaluation of the Cramer–Von Mises distance.

(3) Evaluation of the RMSE at the tail of the distribution, by calculating the RMSE for the
rightmost k = M/2 . . . M bins of the PDF.

(4) Graphical comparison between estimated and theoretical higher order normalized
moments:

mX (n) = E{Xn}
En{X} (9.25)

(5) Graphical comparison of the goodness of fit of each theoretical PDF in a semilogarithmic
plot.

(6) Graphical comparison of the goodness of fit of each theoretical CDF.
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Figure 9.8 Target C: fluctuation model empirical evaluation. (a) Amplitude empirical PDF and
theoretical models and (b) normalized higher order moment comparison.
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Figure 9.9 Target D: fluctuation model empirical evaluation. (a) Amplitude empirical PDF and
theoretical models and (b) normalized higher order moment comparison.

The evaluation procedure has been applied to target datafiles A–D with different results in each
case. The best fit is not achieved by the same theoretical model in all cases, although heavy-
tailed distributions such as the generalized K-distribution with LN texture, the K-distribution
and the LN distribution match the real data better than the traditional Swerling chi model.
Figures 9.6–9.9 show the results of the fitting process applied to target datafiles A–D, respec-
tively. It should be noted that the datafiles used for this analysis are characterized by a low
clutter level (low sea state). As a consequence, the effect of clutter in the results has been
neglected.

9.4 Experimental CFAR Behavior
The experimental CFAR behavior of a subset of the range-distributed coherent detectors
detailed in Section 9.2 has been evaluated by means of a direct Monte Carlo approach.
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Table 9.4 Experimental datafiles.

Waveform modulation rate (Hz) Bandwidth (MHz) Range resolution (m)

Datafile 1 5,000 200 1
Datafile 2 1,000 1,000 0.20
Datafile 3 1,000 2,000 0.10

Table 9.4 details the parameters associated with each of the three upwind sea-clutter datafiles
that have been used. For each parameter set, care has been taken to ensure that the file
selected is statistically representative of the behavior of its class within the complete sea-clutter
database. Each datafile consists of 120 range cells and 100,000 temporal samples (200 MHz
bandwidth files), or 655 range cells and 20,000 time samples (1,000 MHz and 2,000 MHz
case). The total number of samples is therefore 12 × 106 (200 MHz bandwidth files), or
13.1 × 106 samples (1,000 MHz and 2,000 MHz case). Depending on the configuration of
each particular analysis, the number of available trials ranges between 10/Pfa and 100/Pfa, for
Pfa = 10−3 [102].

A sliding window of N temporal samples, K reference range cells, and G guard cells at
each side of the group of Hs cells under test has been used. The processing window is moved
over each datafile with 50% temporal overlap and on a range cell by range cell basis along the
range axis. For each position, the following detection statistics are evaluated: Rao test, GLRT,
Wald test, subspace versions of the aforementioned detectors, and the AMGLRT.

With the exception of AMGLRT, the detectors considered require an estimate of the distur-
bance covariance matrix. In this chapter, the three covariance estimation techniques described
in Section 9.2.4 have been used, resulting in three detection schemes per detector structure. In
each case, a Doppler detector bank has been implemented for 16 steering vectors corresponding
to the discrete normalized central Doppler frequencies, uniformly spaced between −0.5 and
0.5. Similarly, the steering matrix for subspace-based tests has been built with three steering
vectors: one corresponding to a central Doppler frequency and the two adjacent ones. The Pfa

per detector scheme and central Doppler channel has been directly estimated normalizing the
false alarm count to the number of Monte Carlo trials.

The number of temporal samples has been set to N = 16, with K = 32 reference cells and
G = 1 guard range bin per side of the group of cells under test. The value N = 16 has been chosen
as a compromise between computational cost and Doppler selectivity. Following the Reed–
Mallet–Brennan rule [52, 103], which states that the convergence measure of effectiveness
(MOE) for the SCM algorithm is K = 2N , K = 32 has been used9. Two values for Hs have
been considered, Hs = 16 and Hs = 50. For the simulation configurations characterized by
these two parameter sets, probability of false alarm against threshold curves are obtained per
Doppler channel and for each combination of detector and covariance estimation technique.
A plot of the empirical Pfa, for a specific nominal threshold chosen to guarantee a pre-defined
Pfa against white Gaussian noise [104], is a convenient graphical representation of the extensive

9The MOE is defined as the number of independent and identically distributed secondary data per input sample so
that the adaptive processor performance is close (nominally −3 dB) to the optimum.



352 CHAPTER 9 • Detection of Extended Target in Compound-Gaussian Clutter

100 100

10–1

10–2

10–3

10–4

10–1

10–2

10–3

10–4

PF
A

PF
A

−0.5 0 0.5

Experimental CFAR behavior rank-one detectors /
(N = 16, K = 32) / H = 16

Normalized Doppler frequency

Nominal PFA0.001

−0.5 0 0.5

Experimental CFAR behavior subspace detectors /
(N = 16, K = 32) / H = 16

Normalized Doppler frequency

Nominal PFA0.001

(a) (b)

Rao average
Rao SCM
Rao NSCM
Rao RP
GLRT SCM
GLRT NSCM
GLRT RP
Wald SCM
Wald NSCM
Wald RP
AMGLRT

Rao SCM
Rao NSCM
Rao RP
GLRT SCM
GLRT NSCM
GLRT RP
Wald SCM
Wald NSCM
Wald RP

Figure 9.10 Datafile 1 CFAR behavior. Range resolution 1 m. Best fit: GK-LNT distribution.
(a) Rank-one detectors and (b) subspace detectors.
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Figure 9.11 Datafile 2 CFAR behavior. Range resolution 0.20 m. Best fit: GK-LNT distribution.
(a) Rank-one detectors and (b) subspace detectors.

numerical results obtained. For the detectors for which no theoretical expression relating Pfa

and threshold is available,10 simulations against white Gaussian noise have been used to set
the nominal thresholds.

The results corresponding to Hs = 16 are shown in Figures 9.10–9.12, for datafiles
1–3, respectively, with reference to both rank-one (subplot a) and subspace signal (subplot b)
detectors. Thresholds have been set to guarantee for each detection scheme a nominal Pfa

of 10−3.

10The definition of nominal threshold can be different. For example, another alternative was followed in Reference 95.
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Figure 9.12 Datafile 3 CFAR behavior. Range resolution 0.10 m. Best fit: LN distribution.
(a) Rank-one detectors and (b) subspace detectors.

The detector labeled as “Rao average” consists of the Rao test form using the whole datafile
for SCM covariance estimation. The performance associated to this detector is generally poorer
than the remaining alternatives. This implies that local covariance estimation is beneficial in
terms of Pfa regulation regardless of the intrinsic heterogeneity of sea-clutter.

In this representation a perfect CFAR behavior is denoted by a constant Pfa against Doppler
experimental curve. Results clearly show that the CFAR property is not practically achieved
by any of the detectors considered, with degradations of up to two orders of magnitude in some
specific decision rules. An increased degradation of Pfa in the regions of high-clutter PSD is
also a common trend. This has been reported before for point-like target detectors [104] and
is likely to be related to the higher non-stationarity of the clutter at that spectral zone [95].
The Welch estimated average PSD, for the experimental clutter data used here, supports this
conclusion [15].

It is interesting to notice that the CFAR degradation experienced in correspondence of
datafile 3 is much more severe than the one in datafiles 1 and 2. This could be explained
observing that the distribution better modeling the disturbance in datafiles 1 and 2 is a GK-LNT,
which is compatible with an SIRV representation (a basic assumption for all the considered
receivers). On the contrary, the clutter in datafile 3 is much more spikier than that in datafiles
1 and 2 and is statistically described by an LN model which is not amenable to a compound
representation.

Nevertheless, the best performance is consistently provided by the detector variants resort-
ing to RP covariance estimation technique, even in dataset 3 where there is a statistical model
mismatch. Specifically, the Rao test detector with RP covariance estimation features the most
robust CFAR behavior across all the simulations performed, with a maximum actual Pfa of
0.5 × 10−2. Subspace detectors have wider regions of degraded CFAR performance that is
related to their increased effective Doppler bandwidth. Finally, results for Hs = 16 and Hs = 50
are nearly identical suggesting a relative independence between the size of the processed range
window and the CFAR degradation to be expected.

It is interesting to compare the results obtained in correspondence of datafile 3 with
those for simulated data with the same spikiness but compatible with a compound-Gaussian
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Figure 9.13 Simulated data following datafile C statistics. CFAR behavior.

representation. To this end, a convenient simulation technique has been implemented to gen-
erate a dataset with the following properties [105, 106]:

(1) The overall amplitude PDF follows a GK-LNT distribution. The simulated datafile
matches, in each range cell, the shape and scale parameters profile estimated from the
real data.

(2) The average covariance structure of the empirical data is used as the covariance matrix
of the simulated datafile.

The Pfa of the detectors against simulated data based on the statistics of datafile 3 is detailed
in Figure 9.13 and should be compared with Figure 9.12a. The degradation in CFAR behavior
between both figures can be attributed both to the spectral heterogeneity within the reference
window and to the statistical model mismatch.

Additionally, a comparison with a practical ad hoc detection scheme has been performed,
allowing the trade-off between increased computational complexity and improvement in
performance over conventional approaches to be assessed. The conventional receiver has been
implemented as follows:

(1) Fast Fourier transform (FFT) of the coherent processing interval (CPI) followed by
square-law processing in each Doppler channel normalized using a range-acting standard
Cell-averaging CFAR.

(2) Normalization using data from the same Doppler channel of nearby range cells.

(3) The overall range-distributed detection statistic is obtained by arithmetic integration of
the normalized value of each cell within the considered group of Hs range cells.

The experimental performance of this detector (FFTCFAR) against datafile 1 is compared in
Figure 9.14 with that of Rao-SCM, Rao-NSCM, Rao-RP, and GMSD-SCM. The conventional
approach presents the poorest CFAR behavior among the coherent detectors evaluated in this
chapter.
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Figure 9.14 Comparison with baseline conventional Doppler receiver.

9.5 Detection Performance
The CFAR property across all Doppler channels is not practically achieved by any of the
detectors under evaluation. Therefore, nominal thresholds cannot be used for the evaluation of
the detection performance as the actual operating Pfa point would not be constant. However,
taking advantage of the empirical Pfa against threshold and Doppler curves, it is possible to use
a different clairvoyant threshold for each Doppler channel. With this approach, a constant Pfa

of 10−3 across the Doppler spectrum has been set, and the performance comparison between
the different detection strategies has been performed.

Two different approaches have been used for the evaluation of the detection performance:
detection probability (Pd) of a synthetic target embedded in real clutter and experimental
high-resolution detection maps for the case of real target (inflatable boat) and clutter data.

9.5.1 Detection Probability: Simulated Target and Real Clutter
In this section, the detection performance of rank-one detectors is analyzed injecting a synthetic
target in a clutter-only datafile with range-resolution 0.20 m. Precisely, the synthetic target
is simulated as follows x(t) = αt p, t = 1, . . . , Hs, with p the temporal steering vector (fd =
−0.125, namely a target signal very close to the peak of the clutter PSD), and Hs = 16. As to
the αt’s, they comply with the following three MDS models: Model 1 (target uniformly spread
within the Hs primary cells), Model 2 (target uniformly spread within the first four primary
cells), and Model 3 (point-like target concentrated in the first range bin of the primary cells).
Additionally, the phases of the target scatterers are modeled as independent random variables
uniformly distributed in (0, 2π].

The Pfa is set to 10−3 and the SCR is defined as:

SCR =
Hs∑

t=1

|αt |2
(p†M̂−1

avgp)

N
(9.26)
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Figure 9.15 Detection probability. Simulated target and real clutter. N = 16, Hs = 16, K = 32.
Pfa = 10−3. (a) Target Model 1: uniformly spread target within the complete primary
data. (b) Target Model 2: uniformly spread target within the first four primary range
cells. (c) Target Model 3: point-like target concentrated in the first primary range cell.

where M̂−1
avg is the SCM estimated from the entire clutter dataset. Finally, the number of

integrated pulses is N = 16, and the number of secondary data used for covariance estimation
is K = 32.

In Figure 9.15a–9.15c, Pd is plotted versus SCR with reference to target Models 1–3,
respectively. Adaptive versions of the Rao test, Wald test, and GLRT are considered based on
the three covariance estimation techniques already discussed in previous sections.

For comparison purposes, the performance of a low-resolution system (Hs × 0.2 � 3 m,
which is matched to the typical size of some maritime small targets) using adaptive versions
of the NMF is reported too in all the figures. The low-resolution primary data (under both
hypotheses) has been obtained adding together the returns from the 16 range cells contained
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Figure 9.16 High-resolution detection maps. RP covariance estimation. Target A. (a) Rao test;
(b) GLRT; (c) Wald test; and (d) Subspace Rao test.

in the primary dataset of the original high-resolution datafile. A similar procedure has been
implemented to get a low-resolution secondary dataset from HsK synthetic target-free high-
resolution range cells.

Results clearly show the effect of each specific covariance estimation technique. NSCM
consistently provides the best detection performance, closely followed by SCM. The additional
loss associated with RP covariance estimation technique is approximately 3 dB with respect
to the same detector based on the NSCM.

Given a specific covariance estimator, the relative performance between detectors is
strongly dependent on the adopted MDS model. For evenly distributed target scatterers (Model
1), Rao detector features the best performance, with the GLRT approach within 1 dB below it.
Wald test presents a Pd approximately 3 dB worse than Rao test. However, the joint analysis
of Figure 9.15a–9.15c shows that the three approaches are differently affected by collapsing
losses. The comparison clearly shows that Rao test exhibits a strong performance loss when
the target is concentrated into a small fraction of the cells under test. In particular, for target
Model 3, the Pd associated with Rao detectors is nearly zero (Figure 9.15c). However, in this
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case Wald test still guarantees a satisfactory detection performance. This clearly supports the
inherent robustness of Wald test against collapsing losses. The behavior of GLRT variants is
between that of Rao test and Wald test.

The results also highlight that over-resolving the target improves the detection performance.
This can be shown by comparing the performance associated with ANMF variants to that of
range-distributed detectors. ANMF variants represent the conventional approach of matching
the range resolution of the radar system to the physical dimension of the target to be detected.
Figure 9.15a shows that the low-resolution approach is outperformed by range-distributed
detectors applied to the over-resolved target returns. Even for the sparse target pattern of target
Model 2, in which only 4 out of the 16 processed range cells contain useful target energy
(Figure 9.15b), the performance of both GLRT and Wald test is still better than the low-
resolution counterpart. In the extreme situation given by Model 3, Wald test still outperforms
conventional low-resolution ANMF detectors.

9.5.2 Detection Maps: Real Target and Clutter Data
The test statistic of each detection structure has been calculated for each position of the sliding
window over a particular target datafile and per Doppler channel. The resultant range against
CPI matrix can be thresholded to generate a high-resolution detection map. The thresholding
process is performed using clairvoyant thresholds obtained from target-free areas of each
particular target datafile producing a high-resolution detection map per detector and Doppler
channel. It is convenient to combine the detection maps associated with each Doppler channel.
In this representation, the number of Doppler channels exceeding the threshold is indicated
per range cell and CPI number.

Example results for a radar acquisition of Target A (with significative radial velocity), for
RP covariance estimation technique, are shown in Figure 9.16. The Pfa per Doppler channel is
set to Pfa = 10−3, and the range interval shown corresponds to the surroundings of the target.
The figures highlight that all the techniques are able to detect the target even if the robust
CFAR behavior of RP variants is at the expense of additional detection losses. However, as Pfa

regulation is a key requirement in any practical system, RP covariance estimation variants can
be considered a viable candidate for real operation.

It is interesting to note that the target generates detections in several adjacent Doppler
channels. Figure 9.17a highlights an example: at CPI 48 and range index 1710, the threshold
is exceeded for three Doppler channels and three detections are declared. For the specific
configuration of the example, a group of 16 range cells contribute to the value of the test
statistic. The short-time Fourier transform (STFT) of the returns from two range cells, among
the Hs = 16 under test, is shown in Figure 9.17b and 9.17c. Additionally, the corresponding
Rao test statistic is shown in the time-Doppler plane of Figure 9.17d. There is significant
energy at several adjacent Doppler channels that exceed the associated clairvoyant threshold.

For the case of subspace detectors and due to the higher actual bandwidth associated with
the three steering vectors in the implemented mode matrix, this behavior is more pronounced
with detections at up to five Doppler channels.

Summarizing, the obtained detection maps show that for the specific SCR of the considered
real datasets, all of the receiving structures achieve a satisfactory detection of the target. This
nominal SCR has been estimated to be between 10 and 15 dB depending on the particular
target datafile.
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Figure 9.17 Doppler against time analysis for range cell 1710. (a) Rao SCM detector. Multiple
Doppler detections at range index 1710, CPI number 48; (b) STFT; (c) STFT; and
(d) Test statistic.

9.6 Conclusions
This chapter has considered the performance analysis of range-distributed target detectors, in
the presence of high-resolution sea-clutter. To this end, the state of the art concerning the prob-
lem of interest has been reviewed. Due to their theoretical CFAR behavior with respect to the
clutter power in the range cells under test, rank-one and subspace detectors based on Rao test,
Wald test, and GLRT techniques have been chosen as suitable schemes for the analysis. Addi-
tionally, a reference data-free range-spread target detector, the AMGLRT, is also considered.

The statistical description of the clutter datafiles as well as the target datasets, corresponding
to small maritime vessels of special interest in homeland security applications such as an
inflatable or a small wooden boat, has been presented.

Then, the experimental CFAR behavior of the adaptive versions of the selected detec-
tors has been assessed exploiting three covariance matrix estimation approaches and three real
clutter datafiles, at different sub-meter range resolutions. Interestingly, one of the datafiles also
exhibits statistical model mismatches with respect to the SIRV design hypothesis common to
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all the detectors considered. As a result of the analysis, it can be claimed that (on the considered
datafiles), none among the considered detectors achieves rigorously the CFAR property. How-
ever, the Rao detector with RP covariance estimation is the most robust exhibiting an acceptable
degradation in the CFAR behavior for the datasets that comply with the SIRV model.

Two approaches have been followed to assess the detection capabilities of the processors.
First, the detection performance of each scheme has been evaluated by injecting a synthetic
range-distributed target in real high-resolution clutter. Results show the different impact of
collapsing losses in each of the detection schemes under evaluation. In particular, the Wald test
is robust, achieving a satisfactory performance even operating under a severe mismatch between
the actual and hypothesized target range extension. Additionally, the performance improvement
associated with over-resolved targets has been quantified through a direct comparison to a low-
resolution NMF-based detection approach. Finally, the range–time detection maps of some
considered receivers have been presented showing that detection of small maritime targets,
such as an inflatable boat, embedded in spiky sea-clutter is possible using high-resolution
sub-meter radar systems equipped with suitable detection strategies.

The lesson learned from this experimental analysis can be summarized as follows:

• Even if all the considered receivers do not exhibit the CFAR behavior on real data, the
detectors based on RP covariance estimation are the most robust. Indeed, the discrepancy
between the theoretical and the actual Pfa is acceptable provided that the range resolution
is greater than 0.20 m. As a consequence, this is the recommended covariance estimation
strategy also for clutter at very high resolution (≥0.20 m). Nevertheless, the problem of
achieving a robust CFAR behavior at range resolutions smaller than 0.20 m, where a strong
model mismatch is present, represents still a relevant practical open issue.

• The analyzed receivers for range-spread targets outperform the classic FFTCFAR that is
the conventional system used in many modern radar systems.

• The analysis of the detection capabilities highlights that suitably designed detectors for
range-distributed targets can provide performance improvements over receivers synthesized
for point-like target scenarios.

• The experimental results show that certain detectors are extremely robust against collapsing
losses (Wald and GLRT detectors). This is a key factor that makes these detectors ideally
suited for practical implementation, provided that they are combined with a suitable covari-
ance estimation technique. Therefore, it can be concluded that Wald or GLRT detectors
with RP covariance estimation seem to be the most suitable detection schemes.

Appendix 9.A

9.A.1 Derivation of GLRT, Rao Test, and Wald Test
In this section, we derive the GLRT, the Rao test, and the Wald test for the detection problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

H0 :

{
r(t) = n(t), t = 1, . . . , Hs

rk = nk , k = 1, . . . , K

H1 :

{
r(t) = αtp + n(t), t = 1, . . . , Hs

rk = nk k = 1, . . . , K

(9.27)
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where p denotes the (known) unitary norm steering vector, the αt’s, t = 1, . . . , Hs, are
(unknown) deterministic parameters accounting for both the target and the channel effects, and
the random vectors n(t)’s, t = 1, . . . , Hs, and nk’s, k = 1, . . . , K , are independent zero-mean
complex circular Gaussian vectors sharing the same positive definite structure of the covari-
ance matrix; precisely, n(t) ∼ N (0, s(t)2Σ), t = 1, . . . , Hs and nk ∼ N (0, s2

kΣ), k = 1, . . . , K .
At the design stage, we assume that the structure Σ of the covariance matrix is known. Besides,
we define the following two vectors:

• θr = [αR,1, αI ,1, . . . , αR,Hs , αI ,Hs ]
T a 2Hs-dimensional vector, with αR,t and αI ,t the real and

the imaginary part of αt , t = 1, . . . , Hs;
• θs = [s(1)2, . . . , s(Hs)2]T a Hs-dimensional vector.

9.A.1.1 GLRT
Assuming that the structure Σ of the covariance matrix is known, the detection algorithm imple-
menting the GLRT is tantamount to substituting the unknown parameters αt’s, t = 1, . . . , Hs,
and s(t)2, t = 1, . . . , Hs, appearing in the likelihood ratio test with their ML estimates under
each hypothesis [107]. Otherwise stated, the GLRT is the following decision rule:

max
θr ,θs

p(r(1), . . . , r(Hs)|H1, θr , θs, Σ)

max
θs

p(r(1), . . . , r(Hs)|H0, θs, Σ)

H1
>
<
H0

γGLRT (9.28)

with γGLRT the detection threshold to be set according to the desired value of the false alarm
probability Pfa.

Subsequent developments require specifying the PDFs

p(r(1), . . . , r(Hs)|H0, θs, Σ)

and

p(r(1), . . . , r(Hs)|H1, θr , θs, Σ)

Previous assumptions imply that the aforementioned PDFs may be written as:

p(r(1), . . . , r(Hs)|H0, θs, Σ) =
Hs∏

t=1

π−N

s(t)2N det(Σ)
exp

(
−r(t)† Σ−1

s(t)2
r(t)

)
(9.29)

under H0 and

p(r(1), . . . , r(Hs)|H1, θr , θs, Σ) =
Hs∏

t=1

π−N

s(t)2N det(Σ)
exp

(
−(r(t) − αtp)† Σ−1

s(t)2
(r(t) − αtp)

)
(9.30)

under H1. Maximizing p(r(1), . . . , r(Hs)|H1, θr , θs, Σ) over θr yields

θ̂r,1 =
[
Re

(
p†Σ−1r(1)

p†Σ−1p

)
, Im

(
p†Σ−1r(1)

p†Σ−1p

)
, . . . , Re

(
p†Σ−1r(Hs)

p†Σ−1p

)
, Im

(
p†Σ−1r(Hs)

p†Σ−1p

)]T
(9.31)
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and

θ̂s,1 = argmaxθs

{
Hs∏

t=1

1

s(t)2N det(Σ)
exp

[
− 1

s(t)2

(
r(t)†Σ−1r(t) − |p†Σ−1r(t)|2

p†Σ−1p

)]}
(9.32)

Moreover the maximizer of (9.32) is

θ̂s,1 = 1

N

[(
r(1)†Σ−1r(1) − |p†Σ−1r(1)|2

p†Σ−1p

)
, . . . ,

(
r(Hs)

†Σ−1r(Hs) − |p†Σ−1r(Hs)|2
p†Σ−1p

)]T
(9.33)

Analogously, maximizing p(r(1), . . . , r(Hs)|H0, θs, Σ) over θs yields

θ̂s,0 = 1

N

[
r(1)†Σ−1r(1), . . . , r(Hs)

†Σ−1r(Hs)
]T

(9.34)

Hence, substituting the above ML estimates (9.31), (9.33), and (9.34) in (9.28), the GLRT
decision rule can be recast as:

Hs∏
t=1

⎡⎢⎢⎣ 1

1 − |p†Σ−1r(t)|2
r(t)†Σ−1r(t) p†Σ−1p

⎤⎥⎥⎦
N

H1
>
<
H0

γGLRT (9.35)

which is statistically equivalent to (9.1).

9.A.1.2 Rao Test
Starting from the primary data (i.e. r(t), t = 1, . . . Hs) and assuming that Σ is known, the
detection algorithm implementing the Rao test can be obtained expanding the likelihood ratio
in the neighborhood of the ML estimates of the parameters. Specifically, the Rao test for the
problem of interest is the following decision rule:∥∥∥∥∥∥∥[J−1(̂θr,0, θ̂s,0)]

1
2

θr ,θr

∂ ln p(r(1), . . . , r(Hs)|H1, θr , θs, Σ)

∂θr

∣∣∣∣θr = θ̂r,0

θs = θ̂s,0

∥∥∥∥∥∥∥
2

H1
>
<
H0

γRao (9.36)

where

• γRao is the detection threshold to be set according to the desired value of the false alarm
probability Pfa;

• θ̂r,0 and θ̂s,0 are the ML estimates of θr and θs under H0;
• J(θr , θs) is the Fisher information matrix [36] that can be partitioned as:

J(θr , θs) =
⎡⎣Jθr ,θr

(θr , θs) Jθr ,θs
(θr , θs)

Jθs,θr
(θr , θs) Jθs,θs

(θr , θs)

⎤⎦
• [J−1(θr , θs)]θr ,θr

= [Jθr ,θr
(θr , θs) − Jθr ,θs

(θr , θs) J−1
θs,θs

(θr , θs) Jθs,θr
(θr , θs)]−1.
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Subsequent developments require the evaluation of the gradient of p(r(1), . . . , r(Hs)|H1, θr ,
θs, Σ), given in (9.30), with respect to θr . Specifically, it can be shown that

∂ ln p(r(1), . . . , r(Hs)|H1, θr , θs, Σ)

∂αR,t
= 2Re

(
p† Σ−1

s(t)2
(r(t) − αt p)

)
∂ ln p(r(1), . . . , r(Hs)|H1, θr , θs, Σ)

∂αI ,t
= 2Im

(
p† Σ−1

s(t)2
(r(t) − αt p)

) (9.37)

As to the blocks of the Fisher information matrix, as shown in Appendix 9.A.1.4, they are
given by

Jθr ,θr
(θr , θs) = 2p†Σ−1p diag

(
1

s(1)2
,

1

s(1)2
, . . . ,

1

s(Hs)2
,

1

s(Hs)2

)
Jθr ,θs

(θr , θs) = 02Hs, Hs

with 0n,m an n × m matrix of zeros. It follows that

[J−1(θr , θs)]θr ,θr
= (J(θr , θs)θr ,θr

)−1 = 1

2p†Σ−1p
diag
(

s(1)2, s(1)2, . . . , s(Hs)
2, s(Hs)

2
)

(9.38)

Finally, the ML estimate of θr under H0 is θ̂r,0 = 01,2Hs , while θ̂s,0, the ML estimate of θs

under H0, is the Hs-dimensional column vector

θ̂s,0 = argmaxθs

(
Hs∏

t=1

1

s(t)2N det(Σ)
exp

[
−r(t)† Σ−1

s(t)2
r(t)

])

= 1

N

[
r(1)†Σ−1r(1), . . . , r(Hs)

†Σ−1r(Hs)
]T

Substituting (9.37), (9.38), θ̂r,0, and θ̂s,0 into (9.36), after some algebraic manipulations, we
come up with the following decision rule:

Hs∑
t=1

|p†Σ−1r(t)|2
p†Σ−1p r(t)†Σ−1r(t)

H1
>
<
H0

TRao (9.39)

where TRao is the appropriate modification of the original threshold in (9.36).

9.A.1.3 Wald Test
The Wald test, based on the primary data, can be obtained exploiting the asymptotic efficiency
of the ML estimate. Precisely, it is the following decision rule:

θ̂
T
r,1

(
[J−1(̂θr,1, θ̂s,1)]θr ,θr

)−1
θ̂r,1

H1
>
<
H0

γWald (9.40)

where γWald is the detection threshold to be set according to the desired value of the false alarm
probability Pfa, and θ̂r,1 and θ̂s,1 are the ML estimates of θr and θs under H1, given in (9.31)
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and (9.33), respectively. Thus substituting (9.31), (9.33), and (9.38) into (9.40), after some
algebraic manipulations, we obtain

Hs∑
t=1

|p†Σ−1r(t)|2
p†Σ−1p

(
r(t)†Σ−1r(t) − |p†Σ−1r(t)|2

p†Σ−1p

) H1
>
<
H0

TWald (9.41)

where TWald is the appropriate modification of the original threshold in (9.40).

9.A.1.4 Fisher Information Matrix Evaluation
In this subsection, we evaluate the blocks of the Fisher information matrix J(θr , θs). We begin
with Jθr ,θr

(θr , θs) that is the 2Hs × 2Hs matrix whose (i, j)-th element is

Jθr ,θr
(θr , θs)(i, j) = −E

[
∂ ln p(r(1), . . . , r(Hs)|H1, θr , θs, Σ)

∂θr(i)∂θr( j)

]
i, j ∈ (1, . . . , 2Hs)

where θr(l) denotes the l-th element of the vector θr .
It can be shown that the following equations hold true ∀ t, h ∈ (1, . . . , Hs).

∂ ln p(r(1), . . . , r(Hs)|H1, θr , θs, Σ)

∂αR,t∂αR,h
= − 2

s(t)2
p†Σ−1p δ[t − h]

∂ ln p(r(1), . . . , r(Hs)|H1, θr , θs, Σ)

∂αR,t∂αI ,h
= 0

∂ ln p(r(1), . . . , r(Hs)|H1, θr , θs, Σ)

∂αI ,t∂αI ,h
= − 2

s(t)2
p†Σ−1p δ[t − h]

∂ ln p(r(1), . . . , r(Hs)|H1, θr , θs, Σ)

∂αI ,t∂αR,h
= 0

where δ[·] is the Kroneker function. It follows that Jθr ,θr
(θr , θs) can be expressed as:

Jθr ,θr
(θr , θs) = 2p†Σ−1p diag

(
1

s(1)2
,

1

s(1)2
, . . . ,

1

s(Hs)2
,

1

s(Hs)2

)
As to Jθr ,θs

(θr , θs), it is a 2Hs × Hs matrix whose (i, j)-th entry is

Jθr ,θs
(θr , θs)(i, j) = −E

[
∂ ln p(r(1), . . . , r(Hs)|H1, θr , θs, Σ)

∂θr(i)∂θs( j)

]
i∈(1, . . . , 2Hs) j∈(1, . . . , Hs)

where θs(l) denotes the l-th element of the vector θs. Moreover, it can be shown that

∂ ln p(r(1), . . . , r(Hs)|H1, θr , θs, Σ)

∂αR,t∂θs(h)
= − 2

s(t)4
Re
(

p†Σ−1(r(t) − αt p)
)

δ [h − t]

∂ ln p(r(1), . . . , r(Hs)|H1, θr , θs, Σ)

∂αI ,t∂θs(h)
= − 2

s(t)4
Im
(

p†Σ−1(r(t) − αt p)
)

δ [h − t]
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Thus, observing that

E[(r(t) − αt p)] = 0{N ,1}

we can conclude that Jθr ,θs
(θ) = 02Hs,Hs .

9.A.2 Derivation of AMGLRT
In this section, we face with the detection problem (9.27), assuming that Σ is not known, K = 0,
and Hs ≥ N . The procedure followed to derive the AMGLRT is based on the subsequent steps:

• first, assuming the power levels s(1)2, . . . , s(Hs)2 to be known, the MGLRT [29] is derived,
resorting to the method of sieves, namely restricting the parameter space (Σ, α) to a subspace
such that the ML estimate of the parameters exists and is unique;

• second, substituting suitable estimates of the unknown parameters s(1)2, . . . , s(Hs)2 in place
of their exact values, the fully adaptive test statistic is synthesized.

In order to proceed further, it is necessary to specify the PDFs of the data under both
hypotheses. To this end, resorting to Reference 108, and denoting by a = [α∗

1, . . . , α∗
Hs

]T , we
can write

p(r(1), . . . , r(Hs)|H0, θs, Σ) =
c exp
[
−Tr
(
Σ+ZS̄−1Z†

)]
Hs∏

t=1

detp

(
s(t)2Σ

) δ(Φ†
2Z) = m0(Z|H0, θs, Σ)δ(Φ†

2Z)

(9.42)
under H0 and

p(r(1), . . . , r(Hs)|H1, θr , θs, Σ) =
c exp
[
−Tr
(
Σ+(Z − pa†)S̄

−1
(Z − pa†)†

)]
Hs∏

t=1

detp

(
s(t)2Σ
) δ

(
Φ

†
2(Z − pa†)

)

= m1(Z|H1, θr , θs, Σ)δ
(
Φ

†
2(Z − pa†)

)
(9.43)

under H1, where

• c is a normalization constant;
• S̄ = diag(s(1)2, . . . , s(Hs)2);
• δ( · ) is the product of the Dirac delta functions of the matrix elements of the argument;
• Σ+ is the Moore–Penrose inverse of Σ;
• Φ2 is a N × (N − Rank(Σ)) matrix whose columns form an orthonormal basis for the null

space of the columns of Σ;
• θr = [αR,1, αI ,1, . . . , αR,Hs , αI ,Hs ]

T is 2Hs-dimensional vector, with αR,t and αI ,t the real and
the imaginary parts of αt , t = 1, . . . , Hs;

• θs = [s(1)2, . . . , s(Hs)2]T is a Hs-dimensional vector.
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Thus, we derive the MGLRT for known θs applying the method of sieves. Specifically, we
restrict, under the H1 hypothesis, the parameter space to the set

H1 =
⎧⎨⎩(θr , Σ): ρ = Rank(̂Σ) ≤ N − 1, Σ = Ψ̂†

⎡⎣ B 0ρ,N−ρ

0ρ,ρ 0N−ρ,N−ρ

⎤⎦ Ψ̂

⎫⎬⎭
where ̂Σ = (Z − pa†)S̄

−1
(Z − pa†)†, B � 0{ρ,ρ} is a ρ × ρ matrix and Ψ̂ is the matrix of the

normalized eigenvectors of ̂Σ. Hence, we consider the following decision rule:

sup(
θr ,Σ
)∈H1

m1(Z|H1, θr , θs, Σ)

sup
Σ�0

m0(Z|H0, θs, Σ)

H1
>
<
H0

γMGLRT (9.44)

where γMGLRT is the detection threshold to be set according to the desired value of the false
alarm probability Pfa.

Assuming Hs ≥ N and exploiting Lemma 1 of Reference 29, expression (9.44) can be recast
as

sup
θr : ρ≤N−1

det(ZS̄
−1

Z†)

detp

(
(Z − pa†)S̄

−1
(Z − pa†)†

) H1
>
<
H0

γMGLRT

Moreover, the application of Theorem 1 of Reference 29 leads to

det(ZS̄
−1

Z†)

detp

(
(IN − pp†)ZS̄

−1
Z†(IN − pp†)

) H1
>
<
H0

γMGLRT (9.45)

In order to make the derived detector fully adaptive, we plug into the left-hand side of (9.45)
suitable estimates of the unknown power levels, ŝ(t)2’s say, in place of their exact values s(t)2.
Precisely, we assume that

ŝ(t)2 = 1

N
r(t)†
(

IN − pp†
)

r(t) t = 1, . . . , Hs (9.46)

Note that the data used for estimation purposes are previously projected onto the null space of
p in order to get target-free observations [109]. In fact, the vectors r(t)’s are pre-multiplied for
the projection matrix IN −pp† that spans the null space of p. Interestingly, it can be shown that
the proposed estimates are unbiased, but for a multiplicative factor, and their variance tends
to zero as N diverges (see Appendix 9.A.2.1 for the proof). Notice also that the quoted bias is
irrelevant for detection purposes as it factors out between the numerator and the denominator
of the resulting test statistic under both hypotheses. Finally, substituting (9.46) in (9.45) we
come up with AMGLRT (9.18)

det
(

ZS−1
1 Z†
)

detp

(
(IN − pp†)ZS−1

1 Z†(IN − pp†)
) H1

>
<
H0

TAMGLRT (9.47)
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9.A.2.1 Properties of the Estimates of the Textures
In this subsection, we prove that the estimates (9.46) are unbiased (but for a multiplicative
factor), and their variance tends to zero as N diverges. To this end, we assume that Σ is
bounded in spectral norm [110], namely

∀N λMAX (Σ) < η ∈ R (9.48)

with λMAX ( · ) the maximum eigenvalue of the argument.
We first show that the estimates are unbiased but for a multiplicative factor. In fact, for

t = 1, . . . , Hs

E
[
ŝ(t)2
]

= s(t)2

N
Tr
[(

IN − pp†
)

Σ
]

As to the variances of ŝ (t)2, it can be shown that for t = 1, . . . , Hs

Var
[
ŝ (t)2
]

= s(t)4

N2

N∑
l=1

λ2
l

[(
IN − pp†

)
Σ
]

with λl
[(

IN − pp†
)
Σ
]

, l = 1, . . . , N , the eigenvalues of the matrix
(
IN − pp†

)
Σ. In order to

prove that the variance of the estimates tends to zero as N diverges we first highlight that

λMAX

[(
IN − pp†

)
Σ
]

= λMAX

[(
IN−1 0{N−1,1}
0{1,N−1} 0

)
UΣU†

(
IN−1 0{N−1,1}
0{1,N−1} 0

)]

≤ λMAX

(
UΣU†

)
= λMAX (Σ) (9.49)

where λMAX [A] denotes the maximum eigenvalue of A ∈ H
N , U is a unitary matrix aimed at

rotating the vector p into the N-dimensional vector eN = [0, . . . , 0, 1]†, and the last inequality
follows from the inclusion principle [110, p. 189, 4.3.15].

Thus, exploiting (9.48) in conjunction with (9.49) and the following inequality

N∑
l=1

λ2
l

[(
IN − pp†

)
Σ
]

≤ Nλ2
MAX

[(
IN − pp†

)
Σ
]

we can conclude that

lim
N→∞ Var

[
ŝ (t)2
]

= 0 t = 1, . . . , Hs

References
[1] A. Farina and F. A. Studer, “Detection with high resolution radar: Great promise, big challenge,”

Microwave Journal, vol. 34, pp. 263–273, May 1991.

[2] P. Hughes, “A high-resolution radar detection strategy,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 19, no. 5, pp. 663–667, September 1983.



368 CHAPTER 9 • Detection of Extended Target in Compound-Gaussian Clutter

[3] E. Conte, A. De Maio, and G. Ricci, “GLRT-based adaptive detection algorithms for range-spread
targets,” IEEE Transactions on Signal Processing, vol. 49, no. 7, pp. 1336–1348, July 2001.

[4] N. Bon, A. Khenchaf, and R. Garello, “GLRT subspace detection for range and Doppler distributed
targets,” IEEE Transactions on Aerospace and Electronic Systems, vol. 44, no. 2, pp. 678–696,
April 2008.

[5] E. Conte, A. De Maio, and G. Ricci, “CFAR detection of distributed targets in non-Gaussian
disturbance,” IEEE Transactions on Aerospace and Electronic Systems, vol. 38, no. 2, pp. 612–
621, April 2002.

[6] R. Nitzberg, “Effect of a few dominant specular reflectors target model upon target detection,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 14, no. 4, pp. 670–673, July 1978.

[7] P. Swerling, “Probability of detection for fluctuating targets,” IRE Transactions on Information
Theory, vol. 6, no. 2, pp. 269–308, April 1960.

[8] K. Ward, C. Baker, and S. Watts, “Maritime surveillance radar. Part I: Radar scattering from the
ocean surface,” Radar and Signal Processing, IEE Proceedings F, vol. 137, no. 2, pp. 51–62, April
1990.

[9] S. Haykin, R. Bakker, and B. Currie, “Uncovering nonlinear dynamics – The case study of sea
clutter,” Proceedings of the IEEE, vol. 90, no. 5, pp. 860–881, May 2002.

[10] M. Di Bisceglie and C. Galdi, “Random walk based characterisation of radar backscatter from
the sea surface,” Radar, Sonar and Navigation, IEE Proceedings, vol. 145, no. 4, pp. 216–225,
August 1998.

[11] K. Sangston and K. Gerlach, “Coherent detection of radar targets in a non-Gaussian back-
ground,” IEEE Transactions on Aerospace and Electronic Systems, vol. 30, no. 2, pp. 330–340,
April 1994.

[12] M. Greco, F. Bordoni, and F. Gini, “X-band sea-clutter nonstationarity: Influence of long waves,”
IEEE Journal of Oceanic Engineering, vol. 29, no. 2, pp. 269–283, April 2004.

[13] E. Conte, A. De Maio, and C. Galdi, “Statistical analysis of real clutter at different range resolu-
tions,” IEEE Transactions on Aerospace and Electronic Systems, vol. 40, no. 3, pp. 903–918, July
2004.

[14] A. Farina, F. Gini, M. Greco, and L. Verrazzani, “High resolution sea clutter data: Statistical
analysis of recorded live data,” Radar, Sonar and Navigation, IEE Proceedings, vol. 144, no. 3,
pp. 121–130, June 1997.

[15] J. Carretero-Moya, J. Gismero-Menoyo, A. Blanco-del Campo, and A. Asensio-Lopez, “Statistical
analysis of a high-resolution sea-clutter database,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 48, no. 4, pp. 2024–2037, April 2010.

[16] P. L. Herselman, C. J. Baker, and H. J. de Wind, “An analysis of x-band calibrated sea clutter and
small boat reflectivity at medium-to-low grazing angles,” International Journal of Navigation and
Observation, vol. 2008, pp. 1–14, 2008.

[17] K. Ward, “Compound representation of high resolution sea clutter,” Electronics Letters, vol. 17,
no. 16, pp. 561–563, August 1981.

[18] K. Yao, “A representation theorem and its applications to spherically-invariant random processes,”
IEEE Transactions on Information Theory, vol. 19, no. 5, pp. 600–608, September 1973.

[19] E. Conte and M. Longo, “Characterisation of radar clutter as a spherically invariant random
process,” Communications, Radar and Signal Processing, IEE Proceedings F, vol. 134, no. 2,
pp. 191–197, April 1987.



References 369

[20] M. Rangaswamy, D. Weiner, and A. Ozturk, “Non-Gaussian random vector identification using
spherically invariant random processes,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 29, no. 1, pp. 111–124, January 1993.

[21] B. Picinbono, “Spherically invariant and compound Gaussian stochastic processes (corresp.),”
IEEE Transactions on Information Theory, vol. 16, no. 1, pp. 77–79, January 1970.

[22] G. Wise and N. Gallagher, “On spherically invariant random processes (corresp.),” IEEE Trans-
actions on Information Theory, vol. 24, no. 1, pp. 118–120, January 1978.

[23] J. Tang and Z. Zhu, “Analysis of extended target detectors,” in Proceedings of the IEEE 1996
National Aerospace and Electronics Conference, 1996 (NAECON 1996), vol. 1, pp. 364–368,
May 1996.

[24] E. Conte and M. Lops, “Clutter-map CFAR detection for range-spread targets in non-Gaussian
clutter. Part I: System design,” IEEE Transactions on Aerospace and Electronic Systems, vol. 33,
no. 2, pp. 432–443, April 1997.

[25] E. Conte, M. Di Bisceglie, and M. Lops, “Clutter-map CFAR detection for range-spread targets
in non-Gaussian clutter. Part II: Performance assessment,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 33, no. 2, pp. 444–455, April 1997.

[26] K. Gerlach, M. Steiner, and F. Lin, “Detection of a spatially distributed target in white noise,”
Signal Processing Letters, IEEE, vol. 4, no. 7, pp. 198–200, July 1997.

[27] S. Blunt, K. Gerlach, and J. Heyer, “HRR detector for slow-moving targets in sea clut-
ter,” IEEE Transactions on Aerospace and Electronic Systems, vol. 43, no. 3, pp. 965–974,
July 2007.

[28] K. Gerlach, “Spatially distributed target detection in non-Gaussian clutter,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 35, no. 3, pp. 926–934, July 1999.

[29] K. Gerlach and M. Steiner, “Adaptive detection of range distributed targets,” IEEE Transactions
on Signal Processing, vol. 47, no. 7, pp. 1844–1851, July 1999.

[30] E. Conte and A. De Maio, “Distributed target detection in compound-Gaussian noise with Rao
and Wald tests,” IEEE Transactions on Aerospace and Electronic Systems, vol. 39, no. 2,
pp. 568–582, April 2003.

[31] A. De Maio, “Blind adaptive detection of distributed targets in compound-Gaussian clutter,” in
Radar Conference, 2003. Proceedings of the 2003 IEEE, May 2003, pp. 291–297.

[32] Y. Jin and B. Friedlander, “A CFAR adaptive subspace detector for second-order Gaussian signals,”
IEEE Transactions on Signal Processing, vol. 53, no. 3, pp. 871–884, March 2005.

[33] J. Guan and X. Zhang, “Subspace detection for range and Doppler distributed targets with Rao
and Wald tests,” Signal Processing, in press. vol. 91, no. 1, pp. 51–60, January 2011.

[34] E. Conte, M. Lops, and G. Ricci, “Asymptotically optimum radar detection in compound-Gaussian
clutter,” IEEE Transactions on Aerospace and Electronic Systems, vol. 31, no. 2, pp. 617–625,
April 1995.

[35] F. Gini, “Sub-optimum coherent radar detection in a mixture of K-distributed and Gaussian clutter,”
Radar, Sonar and Navigation, IEE Proceedings, vol. 144, no. 1, pp. 39–48, February 1997.

[36] L. L. Scharf, Statistical Signal Processing: Detection Estimation, and Time Series Analysis. New
Jersey: Prentice Hall, 1991.

[37] A. De Maio and E. Conte, “Uniformly most powerful invariant detection in spherically invariant
random vector distributed clutter,” Radar, Sonar & Navigation, IET, vol. 4, no. 4, pp. 560–563,
August 2010.



370 CHAPTER 9 • Detection of Extended Target in Compound-Gaussian Clutter

[38] X. Shuai, L. Kong, and J. Yang, “Performance analysis of GLRT-based adaptive detector
for distributed targets in compound-Gaussian clutter,” Signal Processing, vol. 90, no. 1,
pp. 16–23, 2010. [Online]. Available: http://www.sciencedirect.com/science/article/B6V18-
4WBK76V-2/2/19a1e770eb577e84210beef39754bd60

[39] E. Conte, A. De Maio, and G. Ricci, “Covariance matrix estimation for adaptive CFAR detection
in compound-Gaussian clutter,” IEEE Transactions on Aerospace and Electronic Systems, vol. 38,
no. 2, pp. 415–426, April 2002.

[40] F. Gini and A. Farina, “Matched subspace CFAR detection of hovering helicopters,” IEEE Trans-
actions on Aerospace and Electronic Systems, vol. 35, no. 4, pp. 1293–1305, October 1999.

[41] F. Gini, M. Greco, and A. Farina, “Radar detection and preclassification based on multiple hypoth-
esis,” IEEE Transactions on Aerospace and Electronic Systems, vol. 40, no. 3, pp. 1046–1059,
July 2004.

[42] F. Gini and A. Farina, “Vector subspace detection in compound-Gaussian clutter. Part I: Sur-
vey and new results,” IEEE Transactions on Aerospace and Electronic Systems, vol. 38, no. 4,
pp. 1295–1311, October 2002.

[43] L. Scharf and B. Friedlander, “Matched subspace detectors,” IEEE Transactions on Signal Pro-
cessing, vol. 42, no. 8, pp. 2146–2157, August 1994.

[44] L. Scharf, S. Kraut, and M. McCloud, “A review of matched and adaptive subspace detectors,”
in Adaptive Systems for Signal Processing, Communications, and Control Symposium 2000.
AS-SPCC. The IEEE 2000, pp. 82–86, 2000.

[45] S. Kraut, L. Scharf, and L. McWhorter, “Adaptive subspace detectors,” IEEE Transactions on
Signal Processing, vol. 49, no. 1, pp. 1–16, January 2001.

[46] S. Kraut and L. Scharf, “The CFAR adaptive subspace detector is a scale-invariant GLRT,” in
Proceedings of the Ninth IEEE SP Workshop on Statistical Signal and Array Processing, 1998,
pp. 57–60, September 1998.

[47] F. Gini, A. Farina, and M. Montanari, “Vector subspace detection in compound-Gaussian clutter.
Part II: Performance analysis,” IEEE Transactions on Aerospace and Electronic Systems, vol. 38,
no. 4, pp. 1312–1323, October 2002.

[48] A. Younsi, M. Greco, F. Gini, and A. Zoubir, “Performance of the adaptive generalised matched
subspace constant false alarm rate detector in non-Gaussian noise: An experimental analysis,”
Radar, Sonar & Navigation, IET, vol. 3, no. 3, pp. 195–202, June 2009.

[49] E. Conte, A. De Maio, and C. Galdi, “CFAR detection of multidimensional signals: An invariant
approach,” IEEE Transactions on Signal Processing, vol. 51, no. 1, pp. 142–151, January 2003.

[50] E. Kelly, “An adaptive detection algorithm,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 22, no. 2, pp. 115–127, March 1986.

[51] F. Gini and J. Michels, “Performance analysis of two covariance matrix estimators in compound-
Gaussian clutter,” Radar, Sonar and Navigation, IEE Proceedings, vol. 146, no. 3, pp. 133–140,
June 1999.

[52] I. Reed, J. Mallett, and L. Brennan, “Rapid convergence rate in adaptive arrays,” IEEE Transactions
on Aerospace and Electronic Systems, vol. 10, no. 6, pp. 853–863, November 1974.

[53] C. Richmond, “A note on non-Gaussian adaptive array detection and signal parameter estimation,”
Signal Processing Letters, IEEE, vol. 3, no. 8, pp. 251–252, August 1996.



References 371

[54] E. Conte, M. Lops, and G. Ricci, “Adaptive radar detection in compound-Gaussian clutter,” in
Proceedings of Eusipco ’94, pp. 526–529, September 1994.

[55] F. Gini, M. Greco, and L. Verrazzani, “Detection problem in mixed clutter environment as a
Gaussian problem by adaptive preprocessing,” Electronics Letters, vol. 31, no. 14, pp. 1189–1190,
July 1995.

[56] E. Conte and A. De Maio, “Mitigation techniques for non-Gaussian sea clutter,” IEEE Journal of
Oceanic Engineering, vol. 29, no. 2, pp. 284–302, April 2004.

[57] R. Nitzberg, “Application of maximum likelihood estimation of persymmetric covariance matrices
to adaptive processing,” IEEE Transactions on Aerospace and Electronic Systems, vol. 16, no. 1,
pp. 124–127, January 1980.

[58] E. Conte, A. De Maio, and G. Ricci, “Recursive estimation of the covariance matrix of a compound-
Gaussian process and its application to adaptive CFAR detection,” IEEE Transactions on Signal
Processing, vol. 50, no. 8, pp. 1908–1915, August 2002.

[59] F. Gini and M. Greco, “Covariance matrix estimation for CFAR detection in cor-
related heavy tailed clutter,” Signal Processing, vol. 82, no. 12, pp. 1847–1859,
2002. [Online]. Available: http://www.sciencedirect.com/science/article/B6V18-46FPV88-
3/2/6031e18cdd4a35a79e0e75fc329df27d

[60] J. Hiemstra, “Colored diagonal loading,” in Proceedings of the IEEE 2002 Radar Conference,
pp. 386–390, 2002.

[61] B. Carlson, “Covariance matrix estimation errors and diagonal loading in adaptive arrays,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 24, no. 4, pp. 397–401, July 1988.

[62] M. Steiner and K. Gerlach, “Fast converging adaptive processor or a structured covariance matrix,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 36, no. 4, pp. 1115–1126, October
2000.

[63] A. Aubry, A. De Maio, L. Pallotta, and A. Farina, “Maximum likelihood estimation of a structured
covariance matrix with a condition number constraint,” IEEE Transactions on Signal Processing,
vol. 60, no. 6, pp. 3004–3021, June 2012.

[64] A. Aubry, A. De Maio, L. Pallotta, and A. Farina, “Radar detection of distributed targets in
homogeneous interference whose inverse covariance structure is defined via unitary invariant
functions,” IEEE Transactions on Signal Processing, vol. 61, no. 2, pp. 4949–4961, October
2013.

[65] B. Kang, V. Monga, and M. Rannfaswamy, “Rank-constrained maximum likelihood estimation of
structured covariance matrices,” IEEE Transactions on Aerospace and Electronic Systems, vol. 50,
no. 1, pp. 501–515, January 2014.

[66] E. Conte, A. De Maio, A. Farina, and G. Foglia, “Design and analysis of a knowledge-aided
radar detector for Doppler processing,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 42, no. 3, pp. 1058–1079, July 2006.

[67] A. De Maio, G. Foglia, A. Farina, and M. Piezzo, “Estimation of the covariance matrix based on
multiple a-priori models,” in 2010 IEEE Radar Conference, pp. 1025–1029, May 2010.

[68] A. De Maio, A. Farina, and G. Foglia, “Knowledge-aided Bayesian radar detectors and their
application to live data,” IEEE Transactions on Aerospace and Electronic Systems, vol. 46, no. 1,
pp. 170–183, January 2010.



372 CHAPTER 9 • Detection of Extended Target in Compound-Gaussian Clutter

[69] A. De Maio, S. D. Nicola, L. Landi, and A. Farina, “Knowledge-aided covariance matrix esti-
mation: A MAXDET approach,” Radar, Sonar & Navigation, IET, vol. 3, no. 4, pp. 341–356,
2009.

[70] W. Melvin and G. Showman, “An approach to knowledge-aided covariance estimation,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 42, no. 3, pp. 1021–1042, July 2006.

[71] W. Melvin and J. Guerci, “Knowledge-aided signal processing: A new paradigm for radar and
other advanced sensors,” IEEE Transactions on Aerospace and Electronic Systems, vol. 42, no. 3,
pp. 983–996, July 2006.

[72] S. Blunt, K. Gerlach, and M. Rangaswamy, “STAP using knowledge-aided covariance estimation
and the FRACTA algorithm,” IEEE Transactions on Aerospace and Electronic Systems, vol. 42,
no. 3, pp. 1043–1057, July 2006.

[73] J. Bergin, C. Teixeira, P. Techau, and J. Guerci, “Improved clutter mitigation performance using
knowledge-aided space–time adaptive processing,” IEEE Transactions on Aerospace and Elec-
tronic Systems, vol. 42, no. 3, pp. 997–1009, July 2006.

[74] A. Aubry, V. Carotenuto, A. De Maio, and G. Foglia, “Exploiting multiple a priori spectral models
for adaptive radar detection,” Radar, Sonar & Navigation, IET, vol. 8, no. 7, pp. 695–707, October
2014.

[75] M. Rangaswamy, F. Lin, and K. Gerlach, “Robust adaptive signal processing methods for
heterogeneous radar clutter scenarios,” in Proceedings of the 2003 IEEE Radar Conference,
pp. 265–272, May 2003.

[76] M. Rangaswamy, J. H. Michels, and B. Himed, “Statistical analysis of the non-
homogeneity detector for STAP applications,” Digital Signal Processing, vol. 14, no. 3,
pp. 253–267, 2004. [Online]. Available: http://www.sciencedirect.com/science/article/B6WDJ-
48SP09H-1/2/837051deaa6e5d1d0dfb01d952a95a37

[77] M. Rangaswamy, F. C. Lin, and K. R. Gerlach, “Robust adaptive signal processing
methods for heterogeneous radar clutter scenarios,” Signal Processing, vol. 84, no. 9, pp.
1653–1665, 2004, special Section on New Trends and Findings in Antenna Array Processing
for Radar. [Online]. Available: http://www.sciencedirect.com/science/article/B6V18-4CHRK2X-
D/2/aedb3bfea93c2fb53c3edc8e7bb3ccd8

[78] M. Rangaswamy, “Statistical analysis of the nonhomogeneity detector for non-Gaussian interfer-
ence backgrounds,” IEEE Transactions on Signal Processing, vol. 53, no. 6, pp. 2101–2111, June
2005.

[79] K. Gerlach, “Outlier resistant adaptive matched filtering,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 38, no. 3, pp. 885–901, July 2002.

[80] D. Rabideau and A. Steinhardt, “Improved adaptive clutter cancellation through data-adaptive
training,” IEEE Transactions on Aerospace and Electronic Systems, vol. 35, no. 3, pp. 879–891,
July 1999.

[81] E. Aboutanios and B. Mulgrew, “Hybrid detection approach for STAP in heterogeneous clutter,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 46, no. 3, pp. 1021 –1033, July
2010.

[82] A. Aubry, A. De Maio, L. Pallotta, and A. Farina, “Covariance matrix estimation via geometric
barycenters and its application to radar training data selection,” Radar, Sonar & Navigation, IET,
vol. 7, no. 6, pp. 600–614, July 2013.



References 373

[83] M. Rangaswamy and J. Michels, “A parametric multichannel detection algorithm for correlated
non-Gaussian random processes,” in 1997 IEEE National Radar Conference, pp. 349–354, May
1997.

[84] M. Rangaswamy, J. Michels, and D. Weiner, “Multichannel detection for correlated non-Gaussian
random processes based on innovations,” IEEE Transactions on Signal Processing, vol. 43, no. 8,
pp. 1915–1922, August 1995.

[85] J. Roman, M. Rangaswamy, D. Davis, Q. Zhang, B. Himed, and J. Michels, “Parametric adaptive
matched filter for airborne radar applications,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 36, no. 2, pp. 677–692, April 2000.

[86] K. Gerlach and F. Lin, “Convergence performance of binary adaptive detectors,” IEEE Transac-
tions on Aerospace and Electronic Systems, vol. 31, no. 1, pp. 329–340, January 1995.

[87] A. Blanco-del Campo, A. Asensio-Lopez, J. Gismero-Menoyo, B. Dorta-Naranjo, and J. Carretero-
Moya, “Instrumental CWLFM high-range resolution radar in millimeter waveband for ISAR
imaging,” Sensors Journal, IEEE, vol. 11, no. 2, pp. 418–429, 2011.

[88] A. del Campo, A. Lopez, B. Naranjo, J. Menoyo, D. Moran, and C. Duarte, “CWLFM millimeter-
wave radar for ISAR imaging with range coverage,” in 2005 IEEE International Radar Conference,
pp. 933–938, May 2005.

[89] A. Asensio-Lopez, A. Blanco-del Campo, J. Gismero-Menoyo, D. Ramirez-Moran, G. Torregrosa-
Penalva, B. Dorta-Naranjo, and C. Carmona-Duarte, “High range-resolution radar scheme for
imaging with tunable distance limits,” Electronics Letters, vol. 40, no. 17, pp. 1085–1086, August
2004.

[90] J. Munoz-Ferreras, F. Perez-Martinez, J. Calvo-Gallego, A. Asensio-Lopez, B. Dorta-Naranjo,
and A. Blanco-del Campo, “Traffic surveillance system based on a high-resolution radar,” IEEE
Transactions on Geoscience and Remote Sensing, vol. 46, no. 6, pp. 1624–1633, June 2008.

[91] J. Munoz-Ferreras and F. Perez-Martinez, “Pitch estimation for non-cooperative maritime targets
in ISAR scenarios,” Radar, Sonar & Navigation, IET, vol. 3, no. 5, pp. 521–529, October 2009.

[92] E. Jakeman and P. Pusey, “A model for non-Rayleigh sea echo,” IEEE Transactions on Antennas
and Propagation, vol. 24, no. 6, pp. 806–814, November 1976.

[93] S. Watts, “Radar detection prediction in K-distributed sea clutter and thermal noise,” IEEE Trans-
actions on Aerospace and Electronic Systems, vol. 23, no. 1, pp. 40–45, January 1987.

[94] M. Greco, F. Gini, and M. Rangaswamy, “Statistical analysis of measured polarimetric clutter data
at different range resolutions,” Radar, Sonar and Navigation, IEE Proceedings, vol. 153, no. 6,
pp. 473–481, December 2006.

[95] M. Greco, F. Gini, A. Younsi, M. Rangaswamy, and A. Zoubir, “Non-stationary sea clutter: Impact
on disturbance covariance matrix estimate and detector CFAR,” in 2008 International Conference
on Radar, pp. 558–562, September 2008.

[96] T. Moon and P. Bawden, “High resolution RCS measurements of boats,” Radar and Signal Pro-
cessing, IEE Proceedings F, vol. 138, no. 3, pp. 218–222, June 1991.

[97] G. Brooker, C. Lobsey, and R. Hennessy, “Low cost measurement of small boat RCS at 94 GHz,”
in 9th International Conference on Control, Automation, Robotics and Vision, 2006 (ICARCV
’06), pp. 1–8, December 2006.

[98] M. A. Richards, J. A. Scheer, and W. A. Holm, Principles of Modern Radar: Basic Principles.
Raleigh, NC: Scitech Publishing, 2010.



374 CHAPTER 9 • Detection of Extended Target in Compound-Gaussian Clutter

[99] M. Skolnik, Radar Handbook, 3rd ed. New York: McGraw-Hill, 2008.

[100] P. Swerling, “Radar probability of detection for some additional fluctuating target cases,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 33, no. 2, pp. 698–709, April 1997.

[101] A. De Maio, A. Farina, and G. Foglia, “Target fluctuation models and their application to
radar performance prediction,” Radar, Sonar and Navigation, IEE Proceedings, vol. 151, no. 5,
pp. 261–269, October 2004.

[102] J. Echard, “Estimation of radar detection and false alarm probability,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 27, no. 2, pp. 255–260, March 1991.

[103] R. Nitzberg, “Detection loss of the sample matrix inversion technique,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 20, no. 6, pp. 824–827, November 1984.

[104] A. De Maio, G. Foglia, E. Conte, and A. Farina, “CFAR behavior of adaptive detectors: An
experimental analysis,” IEEE Transactions on Aerospace and Electronic Systems, vol. 41, no. 1,
pp. 233–251, January 2005.

[105] M. Rangaswamy, D. Weiner, and A. Ozturk, “Computer generation of correlated non-Gaussian
radar clutter,” IEEE Transactions on Aerospace and Electronic Systems, vol. 31, no. 1, pp. 106–116,
January 1995.

[106] E. Conte, M. Longo, and M. Lops, “Modelling and simulation of non-Rayleigh radar clutter,”
Radar and Signal Processing, IEE Proceedings F, vol. 138, no. 2, pp. 121–130, April 1991.

[107] H. L. V. Trees, Detection, Estimation, and Modulation Theory, Pt. 1. John Wiley & Sons, New
York, 1968.

[108] K. Mille, Multidimensional Gaussian Distributions. John Wiley & Sons, New York, 1964.

[109] M. Greco, F. Gini, and M. Diani, “Robust CFAR detection of random signals of random signals in
compound-Gaussian clutter plus thermal noise,” Radar, Sonar and Navigation, IEE Proceedings,
vol. 148, no. 4, pp. 227–232, August 2001.

[110] R. A. Horn and C. R. Johnson, Matrix Analysis. United Kingdom: Cambridge University Press,
1985.



Index

Adaptive Beamformer Orthogonal Rejection
Test (ABORT) 104

AMF-ABORT 105–7
Whitened ABORT 89, 104, 111, 117

Adaptive Coherence Estimator (ACE) test 44,
136, 298

subspace version of 72–4
probability of detection (PD or Pd) and

probability of false alarm (PFA or Pfa) 56
Adaptive Matched Filter (AMF) 5, 44, 89, 136,

166, 298
AMF-ABORT 105–7
AMF-KWA 113–17
AMF-Rao 108–10
AMF-WA 111–13
Bayesian AMF (B-AMF) 138
versus generalized likelihood ratio test 171–3
knowledge-aided parametric AMF

(KA-PAMF) 152, 154, 156–8
PS-AMF 315
subspace version of 72

probability of detection (PD or Pd) and
probability of false alarm (PFA or Pfa)
55–6

Adaptive Normalized Matched Filter (ANMF)
312, 340

Fixed Point ANMF (FP-ANMF) 313, 323
Persymmetric ANMF (P-ANMF) 313, 316
Recursive P-ANMF (RP-ANMF) 313,

316–17
Adaptive Radar, Subspace Detection for 43

maximum invariants 53–4
PD and PFA, analytical expressions for 54

for subspace ACE test 56
for subspace AMF test 55–6
for subspace GLRT 54–5

performance results 57–69
subspace detectors for adaptive radar 43

Adaptive Radar Detection
using covariance matrix structure 212–14

TVAR(m) approximation of Hermitian
covariance matrix 215–18

TVAR(m)-based adaptive detectors,
simulation results of 223–37

TVAR(m)-based adaptive filters,
performance analysis of 218–23

TVAR(m) or AR(m) interferences, adaptive
detectors for 218–23

using data partitioning 239–42
analysis performance of “one-stage”

adaptive CFAR detectors versus
“two-stage” adaptive processing 205,
242–7

Comparative Detection Performance
Analysis 247–55

using EL-selected loading 168
adaptive thresholding using primary data

168–70
different adaptive process per test cell

170–209
single adaptive filter formed with

secondary data 168–70
for sample-starved Gaussian training

conditions 165
Adaptive Sidelobe Blanker (ASB) 93–8

KWAS-ASB 119–23
modifications towards

selectivity 104
selectivity and robustness 117

SRao-ASB 123–5
Subspace-based ASB (S-ASB) 98–104
WAS-ASB 117–19

375



376 Index

adaptive SMI/LSMI filter with ideal
thresholding 243–4

adaptive thresholding 168–70
AMGLRT, derivation of 365–6
AMGLRT detector 341, 359
Amplitude empirical PDF and theoretical

models 349, 350–1
“AR(m)-like” model 213
AR(m) models 213, 234
Autoregressive Model (AR) 167, 213, 226, 234

Band-inverse Hermitian covariance matrices
237

baseband equivalent of received signal 22
Bayesian AMF (B-AMF) 138–43, 150, 156
Bayesian GLRT (B-GLRT) 138–43
Bayesian radar detection in interference 133

KA-STAP models 133, 136
Bayesian AMF (B-AMF) 138
Bayesian GLRT (B-GLRT) 138
hyperparameter selection 140–3
knowledge-aided homogeneous model

137
partially homogeneous and

compound-Gaussian models 144–6
KA-STAP techniques 133
knowledge-aided parametric STAP model

151–9
knowledge-aided two-layered STAP model

147–51
Bayesian STAP detectors 147, 150

versus conventional STAP detectors 140
binary hypothesis test 7, 21–2, 70, 105, 111,

205
BORD (Bayesian Optimum Radar Detector)

312

Central Limit Theorem (CLT) 263, 299
transfer theorem and 267–9

clairvoyant filter 212, 238
clairvoyant optimum filter 169, 206
clairvoyant Wiener filter 218, 224, 243
“cliff-like” scenarios 234, 237
Clutter Covariance Matrix (CCM) 213, 280,

313, 337
Coherent Processing Intervals (CPIs) 4, 57
Complex Elliptical Symmetric (CES)

CES noise, optimal detection in 312–13
CES distribution 5, 300
stochastic representation theorem 300–1

compound-exponential model, for univariate
intensity 264–6

examples 265–6
intensity tail distribution and completely

monotonic functions
264–5

Compound-Gaussian (CG) models 16, 145
CG distributions 301
knowledge-aided 147, 160–2
new interpretation of optimum detector 281

general properties of product of estimators
283–90

product of estimators formulation 281–3
number fluctuations 266

models for 269–70
transfer theorem and CLT 267–9

optimum detection of signal in complex
compound-Gaussian clutter 272

likelihood ratio and data-dependent
threshold interpretation 273–4

likelihood ratio and estimator-correlator
interpretation 275

suboptimum detectors in 275
performance evaluation of optimum

detectors and 280–1
suboptimum approximations to

data-dependent threshold 277–8
suboptimum approximations to

estimator-correlator 278–80
suboptimum approximations to likelihood

ratio 276
and target detection 263

univariate intensity, compound-exponential
model for 264

examples 265–6
intensity tail distribution and completely

monotonic functions 264–5
compound-Gaussian clutter 333

detection performance
real target and clutter data 358–9
simulated target and real clutter 355–8

distributed target coherent detection 334
covariance estimation 340–2
rank-one steering 336–8
subspace steering 338–40

experimental CFAR behavior 349–55
high-resolution experimental data 342

maritime target data 345–9
sea-clutter data 343–5

compound-Gaussian STAP model 135
knowledge-aided 147



Index 377

conic acceptance/rejection idea 87
Constant False Alarm Rate (CFAR)

CFAR property 5, 45, 70, 166, 167–8, 188,
214, 240, 295, 299

and invariance in detection theory
13–14

experimental CFAR behavior 349–55, 359
Continuous Wave Linear Frequency Modulated

(CWLFM) radar 342
conventional Doppler receiver 355
conventional SMI adaptive filter and scalar

CFAR detector 246
conventional STAP detectors

versus Bayesian STAP detectors 140
covariance estimation 340–2, 353, 357, 360
covariance matrix estimation in SIRV 295

background and problem statement 295–9
background parameter estimation in Gaussian

case 296–7
heterogeneous Gaussian environment

298–9
homogeneous Gaussian environment

297–8
covariance matrix estimation in CES noise

302
asymptotic distributions of M-estimators

305–7
link to M-estimators in SIRV framework

308
M-estimators 302–3
properties of M-estimators 304

non-Gaussian environment modeling 300
CES distribution 300–1
subclass of SIRV 301–2

optimal detection in CES noise 312–13
persymmetric structured covariance matrix

estimation 313
circular Gaussian noise, detection in

314–15
non-Gaussian noise, detection in 315–17

radar applications 317
Fixed Point Estimate (FPE), robustness of

323
ground-based radar detection 317–19
Nostradamus radar detection 319
Space–Time Adaptive Processing (STAP)

detection 319–23
Covariance Matrix Taper (CMT) 50–1, 69
Cumulative Distribution Functions (CDFs) 80,

93, 300, 348

data-dependent threshold
likelihood ratio and 273–4
suboptimum approximations to 277–8

data partitioning, adaptive detection
improvement using 239–42

analysis performance of “one-stage” adaptive
CFAR detectors versus “two-stage”
adaptive processing 242–7

comparative detection performance analysis
247–55

observations 255–7
detection probability (PD or Pd) 22, 355–8
detection theory 6

basic concepts 9–10
CFAR property and invariance in detection

theory 13–14
detector design criteria 11–13
signal and interference models 7–9

Deterministic Scatterer Model GLRT
(DSM-GLRT) 339

diagonal loading 167, 170, 173
diagonally loaded and FML adaptive detectors

185
homogeneous interference training conditions

186–7
non-homogeneous interference training

conditions 187–91
Doppler filtering 169
Doppler tolerant pulse 24
duplexer 2
dwell time 4, 22
Dym–Gohberg band-matrix extension technique

213, 215

EC-1 2
EL-AMF detector 178, 194, 207
EL-selected loading, adaptive detection

improvement using 168
adaptive thresholding using primary data

168–70
different adaptive process per test cell 170

2S-GLRT, AMF, and LAMF detectors,
detection performance analysis of
191–209

2S GLRT and AMF detectors for Gaussian
models 178–85

AMF versus GLRT detectors 171–3
diagonally loaded and FML adaptive

detectors 185–91
EL framework 173–8

observations 209–12



378 Index

single adaptive filter formed with secondary
data 168–70

estimates of textures, properties of 367
estimator-correlator interpretation 275

suboptimum approximations to 278–80

false alarm probability (PFA or Pfa) 22, 32, 231,
295

false-alarm threshold calculation 188, 234
Fast Fourier Transform (FFT) 354
finite-subspace (FML) adaptive detectors 185

homogeneous interference training conditions
186–7

non-homogeneous interference training
conditions 187–91

finite-subspace (FML) covariance 173
Fisher information matrix evaluation 364–5
Fisher–Neyman factorization theorem 24
Fixed Point Adaptive Normalized Matched

Filter (FP-ANMF) 313, 323
Fixed Point Estimate (FPE) 309–11

robustness of 323
FPE bias analysis with disturbances 327
Normalized SCM (NSCM) bias analysis

with disturbances 323–6
Sample Covariance Matrix (SCM) bias

analysis with disturbances 323
FREYA radars 3

Gaussian case 296
background parameter estimation in 296–7
optimal detection in 297

heterogeneous Gaussian environment
298–9

homogeneous Gaussian environment
297–8

Gaussian models 5
2S GLRT and AMF detectors for 178–85

Gaussian noise 299
circular 314–15
colored: see colored Gaussian noise
non-Gaussian noise, detection in 315–17

Gaussian Scatterer Model GLRT (GSM-GLRT)
339

Generalized Inner Product (GIP) test 190
Generalized K-distribution with LN Texture

(GK-LNT) 343, 347
Generalized Likelihood Ratio (GLR) statistic

295–6

Generalized Likelihood Ratio Test (GLRT) 5,
12, 14, 44, 105, 136, 166–7, 273, 276,
289, 296, 313, 335, 361–2

Adaptive Matched Filter (AMF) versus
171–3

CFAR property of 280–1
design 21, 28–32, 34, 38
GLRT-FP: see Fixed Point Adaptive

Normalized Matched Filter (FP-ANMF)
GLRT-Linear Quadratic (GLRT-LQ) 298,

312
Knowledge-Aided Parametric GLRT

(KA-PGLRT) 154–8
subspace version of 71–2

probability of detection (PD or Pd) and
probability of false alarm (PFA or Pfa)
54–5

generating variate 300
GMTI (Ground Moving Target Indicator) 320
GNU Scientific Library (GSL) 193
grazing angle 8, 343
ground-based radar detection 317–19
ground clutter 4, 257, 317, 319

Hadamard product 50
heavy-tailed distributions, conjectured behavior

for 289
Hermitian covariance matrix 213

band-inverse 237
TVAR(m) approximation of 215–18

Hermitian positive definite matrix 51
Hertz, Heinrich 1
heterogeneous environment 12
Himmelbett Operations Room 3
historical background and terminology 1–5
homogeneous environment 12, 91
homogeneous STAP model 135
Huber estimator 303, 307
Huber’s M-estimator 306
hyperparameter selection 140–3
hypothesis test 51–3
hypothesized steering vector 50
Hülsmeyer, Christian 1, 2

intensity tail distribution 263
and completely monotonic functions 264–5

interference-plus-noise covariance matrix 48,
54

interference-plus-noise in test vector 49
Interference-to-Noise Ratio (INR) 169
Italian Radar System 2



Index 379

KA-ACE, derivation of 159–60
Kantorovich inequality 170
KASSPER dataset 228
K distribution 264, 290, 301, 309, 349

fluctuation model 347
Kelly’s GLRT detector 166, 210
knowledge-aided compound-Gaussian model

145
Bayesian detectors in 160–2

knowledge-aided homogeneous model 137,
144

Knowledge-Aided Parametric AMF
(KA-PAMF) 152, 154, 156–8

Knowledge-Aided Parametric GLRT
(KA-PGLRT) 154–8

knowledge-aided parametric STAP model
151–9

Knowledge-Aided Space–Time Adaptive
Processing (KA-STAP) 133

knowledge-aided two-layered STAP model
147–51

Kronecker delta 78
KWAS-ASB 119–23

Levy processes 290
Likelihood Ratio (LR) 177, 284

and data-dependent threshold interpretation
273–4

and estimator-correlator interpretation 275
suboptimum approximations to 276

Likelihood Ratio Test (LRT) 24, 26, 46, 48
LN target fluctuation model 346
Loaded AMF (LAMF) adaptive detectors

171–2, 175, 206–7
Loaded Sample Matrix Inversion (LSMI)

adaptive filter 171
and scalar CFAR detector 246–7
LSMI-based LAMF detector 185

Loaded Sample Matrix Inversion (LSMI)
algorithm 170

loss factor 92
LSMI/FML technique 211

MANDREL 3
Marconi, Guglielmo 1
Marcum Q-function 48
maritime target data 345–9
Matched Subspace Detector (MSD) 73
maximal invariant statistic 44, 45, 75

distribution of 77–9

Maximum A Posteriori (MAP) estimate 138,
146, 150, 161, 278–9

Maximum Likelihood
ML-based RMB SMI technique 170
ML covariance matrix estimate 210

Maximum Likelihood Estimate (MLE) 12, 73,
138, 166, 170, 276, 296, 310

Maxwell, James Clerk 1
Measure Of Effectiveness (MOE) 351
mesa plots 97
M-estimators 302–3

asymptotic distributions of 305–7
link in Spherically Invariant Random Vector

(SIRV) framework 308
deterministic texture 308–9
random SIRV texture 309–11

properties of 304
Minimum Mean-Squared Error estimate

(MMSE) 138, 142, 150, 271, 278
ML-GLRT ROCs 197–8
ML model identification and order estimation

215–18
MLTVAR(μ)CME 238–9
Modified GLRT (MGLRT) technique 341
Monte-Carlo ROCs 256
Monte-Carlo simulations 174, 180, 200, 211,

214, 247
Most Powerful (MP) test 8
Moving Target Indicator (MTI) 169
Multiple Dominant Scatterer (MDS) model

345, 348
MUSIC method 306

Naval Research Laboratory (NRL) 2, 264
Neyman–Pearson (NP) criterion 21, 45–6
Neyman–Pearson (NP) detector 26–8, 39–40,

44, 46, 166
Neyman–Pearson (NP) lemma 11
non-Gaussian environment modeling 300

Complex Elliptical Symmetric (CES)
distribution 300

stochastic representation theorem
300–1

Spherically Invariant Random Vector (SIRV),
subclass of 296, 301–2

non-Gaussian noise, detection in 315–17
Non-Scatterer Density-Dependent GLRT

(NSDD-GLRT) 336–7
Normalized Matched Filter (NMF) 94, 299,

312, 317, 337



380 Index

Normalized Sample Covariance Matrix
(NSCM) 308, 311

bias analysis with disturbances 323–6
estimator 340

Nostradamus radar detection 319
nuisance parameters, defined 48
number fluctuations 264, 266

models for 269–70
transfer theorem and CLT 267–9

“one-stage” adaptive CFAR detectors versus
“two-stage” adaptive processing 242–7

“benchmark” detectors 242–4
“one-stage” adaptive detectors 245–6
“two-stage” adaptive detectors 246–7

optimum detectors 26
new interpretation of 281

general properties of product of estimators
283–90

product of estimators formulation 281–3
performance evaluation of 280–1

optimum NP detector and existence of UMP test
26

coherent case 26
non-coherent case 27–8

Over The Horizon radar from the French
Aerospace Lab (ONERA) 319, 321

parametric receivers 87
partially homogeneous and compound-Gaussian

models 144–6
partially homogeneous environment 12
partially homogeneous STAP model 135
performance analysis, and comparisons 91
performance results of adaptive subspace

detectors 57–69
Persymmetric Adaptive Normalized Matched

Filter (P-ANMF) 313, 316
Persymmetric Fixed-Point (PFP) 315
persymmetric structured covariance matrix

estimation 313
circular Gaussian noise, detection in 314–15
non-Gaussian noise, detection in 315–17

phase error vector 50
power of a test 10
Power Spectral Density (PSD) 21, 340, 353
“practically CFAR” detector 167, 214, 219, 257
“practically CFAR” diagonally loaded (LAMF)

detector 209, 245–6
probability of detection (PD or Pd) 10, 46–8

and probability of false alarm (PFA or Pfa) 54

for subspace ACE test 56
for subspace AMF test 55–6
for subspace GLRT 54–5

probability of false alarm (PFA or Pfa) 10, 15,
44, 47, 48, 57

Pulse Repetition Frequency (PRF) 8
Pulse Repetition Interval (PRI) 134

Radioecometro 2
Radio Research Station 2
range-spread targets 5, 7
rank-one steering 336–8
Rao test 12, 14, 338, 362–3
Rayleigh statistics 287, 288
real target and clutter data 358–9
Receiver Operating Characteristic (ROC) 32,

35, 39, 169, 195, 241
Recursive P-ANMF (RP-ANMF) 313, 316–17
Recursive Persymmetric (RP) estimator 340
Reed, Mallet, and Brennan (RMB) test 5
Reed–Mallett–Brennan (RMB) detector 136
Regio Instituto Electrotecnico e delle

Comunicazioni (RIEC) 2
Ricean distribution 48
Robey, Fuhrmann,Kelly, and Nitzberg (RFKN)

166, 171–2
robust receivers 85
robust two-stage decision schemes 89
Root Mean Square Error (RMSE) 348

Sample Covariance Matrix (SCM) 296, 340
bias analysis with disturbances 323

Scatterer Density-Dependent GLRT
(SDD-GLRT) 336–7

scatter matrix 301
sea-clutter data 343–5
secondary data vectors 49
selective receivers 85, 89
selective two-stage detectors 125–8
selective two-stage receivers 89
Short-Time Fourier Transform (STFT) 358
SideLobe Blanker (SLB) 87
SideLobe Canceler (SLC) 88
signal and interference models 7–9
Signal Corps Laboratories 2
signal detection in interference and noise 45

in colored Gaussian noise 46–7
with unknown phase in zero-mean colored

Gaussian noise 47–8
Signal Of Interest (SOI) 43, 272
Signal-to-Clutter power Ratio (SCR) 335



Index 381

Signal-to-Interference-plus-Noise Ratio (SINR)
45, 139

Signal-to-Noise Ratio (SNR) 31, 33, 86, 169,
317

equivalent SNR per pulse 37
loss factor 238

Signal-to-White-Noise Ratio (SWNR) 191
simulated target and real clutter 355–8
single adaptive filter formed with secondary

data 168–70
Singular Value Decomposition (SVD) 52, 76
“small-rank interference” models 213
small-rank techniques 212
Space–Time Adaptive Processing (STAP) 5,

147, 192, 257
detection 319–23
general STAP signal model 134–6
knowledge-aided STAP (KA-STAP) 133

speckle 301, 343
spherically invariant random processes 301
Spherically Invariant Random Vector (SIRV)

334
covariance matrix estimation in: see

covariance matrix estimation in SIRV
subclass of 301–2

square-law non-coherent integrator 31
SRao-ASB 123–5
steering vector 7, 238, 295, 306, 321
Stellung 3
stochastic representation theorem 300–1
Student-t distribution 290, 310
suboptimum detectors in complex

compound-Gaussian clutter 275
performance evaluation of optimum detectors

and 280–1
suboptimum approximations to

data-dependent threshold 277–8
suboptimum approximations to

estimator-correlator 278–80
suboptimum approximations to likelihood

ratio 276
Subspace-based ASB (S-ASB) 98–104
subspace detection, for adaptive radar: see

adaptive radar, subspace detection for
Subspace Detection Paradigm (SDP) 7
Subspace Detector (SD) 50, 89
subspace signal detection, maximum invariants

for 53–4
subspace signal model 43, 44, 49, 338

rationale for 49–51
subspace steering 338–40

Swerling chi target fluctuation model 346
Synthetic Aperture Radar (SAR) 4

taper matrix 50
target reflectivity 8, 21
telemetro radiofonico del rivelatore (RDT) 2
THALES data 320
Theory of Invariance, in hypothesis testing 14
Tiberio, Lieutenant Ugo 2
Toeplitz covariance matrices 167, 173, 211, 213
training data vectors 49
transfer theorem and CLT 267–9
tunable receivers 5
TVAR(m)-based adaptive detectors 213–14

simulation results of 223–37
TVAR(m) model 167, 213
TVAR(m) or AR(m) interferences, adaptive

detectors for 218–23
TVAR(μ)-based adaptive detectors 214, 239
TVAR(μ)-based adaptive filter 218, 239
TVAR(μ) model 228
two-set GLRT (2S-GLRT) framework 176
two-set -GLRT, AMF, and LAMF detectors,

detection performance analysis of
191–209

“favorable” interference scenario 191–3
homogeneous interference training conditions

193–200
non-homogeneous interference training

conditions 200–5
“unfavorable” interference scenario 205–9

two-set GLRT and AMF detectors for Gaussian
models 178

arbitrary scaling factors for interference
matrices 181–5

homogeneous interference training conditions
fluctuating target with known power

178–80
fluctuating target with unknown power

180–1
two-stage detectors

architecture description 91–3
Adaptive Sidelobe Blanker (ASB) 93–8
ASB modifications towards selectivity 104
ASB modifications towards selectivity and

robustness 117
selective two-stage detectors 125–8
Subspace-based ASB (S-ASB) 98–104

in Gaussian interference with unknown
spectral properties 85

for point-like targets 87



382 Index

“two-stage” adaptive detectors 246–7
two-step GLRT 298

Uniformly Most Powerful (UMP) test 8, 21
optimum NP detector and existence of 26

coherent case 26
non-coherent case 27–8

Uniformly Most Powerful Invariant (UMPI) test
337

univariate intensity, compound-exponential
model for 264

examples 265–6
intensity tail distribution and completely

monotonic functions 264–5

VLSI circuitry 239

Wald test 12, 14, 363–4
WAS-ASB 117–19
Watson-Watt, Robert Alexander 2
Weibull distribution 301
Weibull fluctuation model 347

white Gaussian noise, radar detection in 21
Generalized Likelihood Ratio Test (GLRT)

design 28–32
optimum NP detector and existence of UMP

test 26
coherent case 26
non-coherent case 27–8

performance analysis 32
coherent case 32–6
non-coherent case 36–40

problem formulation 22–4
reduction by sufficiency 24–5

Whitened Adaptive Beamformer Orthogonal
Rejection Test (W-ABORT) 89, 104,
111, 117

white-noise equivalent model 214, 222, 230–1
“white-noise optimal” filter 212
“white-noise” loss factor 238
“white-noise” theoretical approximations

194–5
Wishart normalization factor 138
WÜRZBURG 3
WÜRZBURG-RIESE 3


	Contents
	1. Introduction to Radar Detection - Antonio De Maio, Maria S. Greco, and Danilo Orlando
	1.1.Historical Background and Terminology
	1.2.Symbols
	1.3.Detection Theory
	1.4.Organization, Use, and Outline of the Book
	1.5.References
	References

	2. Radar Detection in White Gaussian Noise: A GLRT Framework - Ernesto Conte, Antonio De Maio, and Guolong Cui
	2.1.Introduction
	2.2.Problem Formulation
	2.3.Reduction by Sufficiency
	2.4.Optimum NP Detector and Existence of the UMP Test
	2.5.GLRT Design
	2.6.Performance Analysis
	2.7.Conclusions and Further Reading
	References

	3. Subspace Detection for Adaptive Radar: Detectors and Performance Analysis - Ram S. Raghavan, Shawn Kraut, and Christ D. Richmond
	3.1.Introduction
	3.2.Introduction to Signal Detection in Interference and Noise
	3.3.Subspace Signal Model and Invariant Hypothesis Tests
	3.4. Analytical Expressions for PsubD and PsubFA
	3.5.Performance Results of Adaptive Subspace Detectors
	3.6.Summary and Conclusions
	Appendix 3.A
	Appendix 3.B
	Appendix 3.C
	Appendix 3.D
	References

	4. Two-Stage Detectors for Point-Like Targets in Gaussian Interference with Unknown Spectral Properties - Antonio De Maio, Chengpeng Hao, and Danilo Orlando
	4.1.Introduction: Principles of Design
	4.2.Two-Stage Architecture Description, Performance Analysis, and Comparisons
	4.3.Conclusions
	References

	5. Bayesian Radar Detection in Interference - PuWang, Hongbin Li, and Braham Himed 
	5.1.Introduction
	5.2.General STAP Signal Model
	5.3.KA-STAP Models
	5.4.Knowledge-Aided Two-Layered STAP Model
	5.5.Knowledge-Aided Parametric STAP Model
	5.6.Summary
	Appendix 5.A
	Appendix 5.B
	References

	6. Adaptive Radar Detection for Sample-Starved Gaussian Training Conditions - Yuri I. Abramovich and Ben A. Johnson
	6.1.Introduction
	6.2.Improving Adaptive Detection Using EL-Selected Loading
	6.3.Improving Adaptive Detection Using Covariance Matrix Structure
	6.4.Improving Adaptive Detection Using Data Partitioning
	References

	7. Compound-Gaussian Models and Target Detection: A Unified View - K. James Sangston, Maria S. Greco, and Fulvio Gini
	7.1.Introduction
	7.2.Compound-Exponential Model for Univariate Intensity
	7.3.Role of Number Fluctuations
	7.4.Complex Compound-Gaussian Random Vector
	7.5.Optimum Detection of a Signal in Complex Compound-Gaussian Clutter
	7.6.Suboptimum Detectors in Complex Compound-Gaussian Clutter
	7.7.New Interpretation of the Optimum Detector
	Appendix 7.A
	References

	8. Covariance Matrix Estimation in SIRV and Elliptical Processes and Their Applications in Radar Detection- Jean-Philippe Ovarlez, Frédéric Pascal, and Philippe Forster
	8.1.Background and Problem Statement
	8.2.Non-Gaussian Environment Modeling
	8.3.Covariance Matrix Estimation in CES Noise
	8.4.Optimal Detection in CES Noise
	8.5.Persymmetric Structured Covariance Matrix Estimation
	8.6.Radar Applications
	8.7.Conclusion
	References

	9. Detection of Extended Target in Compound-Gaussian Clutter - Augusto Aubry, Javier Carretero-Moya, Antonio De Maio,Antonio Pauciullo, Javier Gismero-Menoyo, and Alberto Asensio-Lopez
	9.1.Introduction
	9.2.Distributed Target Coherent Detection
	9.3.High-Resolution Experimental Data
	9.4.Experimental CFAR Behavior
	9.5.Detection Performance
	9.6.Conclusions
	Appendix 9.A
	References

	Index



